A generalized finite element method for linear thermoelasticity

University dissertation from Chalmers University of Technology

Abstract: In this thesis we develop a generalized finite element method for linear thermoelasticity problems, modeling displacement and temperature in an elastic body. We focus on strongly heterogeneous materials, like composites. For classical finite element methods such problems are known to be numerically challenging due to the rapid variations in the data. The method we propose is based on the local orthogonal decomposition technique introduced by M{\aa}lqvist and Peterseim (Math. Comp., 83(290): 2583--2603, 2014). In short, the idea is to enrich the classical finite element nodal basis function using information from the diffusion coefficient. Locally, these basis functions have better approximation properties than the nodal basis functions. The papers included in this thesis first extends the local orthogonal decomposition framework to parabolic problems (Paper I) and to linear elasticity equations (Paper II). Finally, using the theory developed in these papers, we address the linear thermoelastic system (Paper III).

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.