Cluster Observations and Theoretical Explanations of Broadband Waves in the Auroral Region

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: Broadband extremely low-frequency wave emissions below the ion plasma frequency have been observed by a number of spacecraft and rockets on auroral field lines. The importance of these broadband emissions for transverse ion heating and electron acceleration in the auroral regions is now reasonably well established. However, the exact mechanism(s) for mediating this energy transfer and the wave mode(s) involved are not well known. In this thesis we focus on the identification of broadband waves by different methods. Two wave analysis methods, involving different approximations and assumptions, give consistent results concerning the wave mode identification. We find that much of the broadband emissions can be identified as a mixture of ion acoustic, electrostatic ion cyclotron and, ion Bernstein waves, which all can be described as different parts of the same dispersion surface in the linear theory of waves in homogeneous plasma. A new result is that ion acoustic waves occur on auroral magnetic field lines. These are found in relatively small regions interpreted as acceleration regions without cold (tens of eV) electrons.From interferometry we also determine the phase velocity and k vector for parallel and oblique ion acoustic waves. The retrieved characteristic phase velocity is of the order of the ion acoustic speed and larger than the thermal velocity of the protons. The typical wavelength is around the proton gyro radius and always larger than the Debye length which is consistent with ion acoustic waves. We have observed quasi-static parallel electric fields associated with the ion acoustic waves in regions with large-scale currents. Waves, in particular ion acoustic waves, can create an anomalous resistivity due to wave-particle interaction when electrons are retarded or trapped by the electric wave-field. To maintain the large-scale current, a parallel electric field is set up, which then can accelerate a second electron population to high velocities.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)