Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing

University dissertation from Institutionen för datavetenskap

Abstract: Ubiquitous computing (Ubicomp) increases in proliferation. Multiple and ever growing in numbers, computational devices are now at the users' disposal throughout the physical environment, while simultaneously being effectively invisible. Consequently, a significant challenge is service discovery. Services may for instance be physical, such as printing a document, or virtual, such as communicating information. The existing solutions, such as Bluetooth and UPnP, address part of the issue, specifically low-level physical interconnectivity. Still absent are solutions for high-level challenges, such as connecting users with appropriate services. In order to provide appropriate service offerings, service discovery in Ubicomp must take the users' context, tasks, goals, intentions, and available resources into consideration. It is possible to divide the high-level service-discovery issue into two parts; inadequate service models, and insufficient common-sense models of human activities.This thesis contributes to service discovery in Ubicomp, by arguing that in order to meet these high-level challenges, a new layer is required. Furthermore, the thesis presents a prototype implementation of this new service-discovery architecture and model. The architecture consists of hardware, ontology-layer, and common-sense-layer. This work addresses the ontology and common-sense layers. Subsequently, implementation is divided into two parts; Oden and Magubi. Oden addresses the issue of inadequate service models through a combination of service-ontologies in concert with logical reasoning engines, and Magubi addresses the issue of insufficient common-sense models of human activities, by using common sense models in combination with rule engines. The synthesis of these two stages enables the system to reason about services, devices, and user expectations, as well as to make suitable connections to satisfy the users' overall goal.Designing common-sense models and service ontologies for a Ubicomp environment is a non-trivial task. Despite this, we believe that if correctly done, it might be possible to reuse at least part of the knowledge in different situations. With the ability to reason about services and human activities it is possible to decide if, how, and where to present the services to the users. The solution is intended to off-load users in diverse Ubicomp environments as well as provide a more relevant service discovery.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.