Modeling and Visualization for Virtual Interaction with Medical Image Data

Abstract: Interactive systems for exploring and analysing medical three dimensional (3D) volume image data using techniques such as stereoscopic rendering and haptics can lead to new workflows for virtual surgery planning. This includes the design of patient-specific surgical guides and plates for additive manufacturing (3D printing). Our applications, medical visualization and cranio-maxillofacial surgery planning, involve large volume data such as computed tomo\-graphy (CT) images with millions of data points. This motivates the development of fast and efficient methods for visualization and haptic rendering, as well as the development of efficient modeling techniques for simplifying the design of 3D printable parts. In this thesis, we develop methods for visualization and haptic rendering of isosurfaces in volume image data, and show applications of these methods to medical visualization and virtual surgery planning. We further develop methods for modeling surgical guides and plates for cranio-maxillofacial surgery, and integrate them into our system for haptics-assisted surgery planning called HASP. This system is now installed at the department of surgical sciences, Uppsala University, and is being evaluated for use in clinical research.