Medin amyloid - a matter close to the heart Studies on medin amyloid formation and involvement in aortic pathology

University dissertation from Uppsala : Universitetsbiblioteket

Abstract: Amyloidoses are a group of protein misfolding diseases characterized by deposits of insoluble fibrillar protein aggregates. Medin amyloid, which is the focus of this thesis, appears in the media of the thoracic aorta in nearly all individuals over 50 years. The fibrils are derived from a 50 amino acid residue fragment of the precursor protein lactadherin. How medin amyloid arises is unknown, but in paper I we demonstrated, with immunohistochemical and in vitro binding experiments, that both lactadherin and medin interact with elastin, implying that the elastic fibre is central in amyloid formation. In paper II, we further showed that the last 18-19 amino acid residues constitute the amyloid-promoting region.In paper III, the consequence of medin deposition was investigated. Aortic specimens from patients with thoracic aorta aneurysm and dissection were examined for medin content. The tissue findings indicated that the two disease groups contained more medin oligomers than normal aortas. Interestingly, recent reports demonstrate that the toxicity of amyloid proteins is attributed to prefibrillar oligomeric aggregates rather than to mature fibrils. In support of this finding, we observed that prefibrillar medin, in contrast to medin fibrils, was toxic in cell culture.Amyloid formation is a nucleation-dependent process. Addition of preformed fibrils to an amyloid protein solution dramatically accelerates fibrillation, a phenomenon called seeding. In paper IV, serum amyloid A-derived (AA) amyloid was found co-localized with medin deposits in the aorta. In vitro, medin fibrils enhanced the formation of AA fibrils, indicative of a seeding mechanism. The data are of great importance as they suggest that one type of amyloid is capable of inducing fibrillation and deposition of another amyloid type.In conclusion, the results of this thesis shed light on how medin is formed, the function of lactadherin and the consequences of medin deposition for aortic pathology.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)