3D structural framework and constraints on the timing of hydrothermal alteration and ore formation at the Falun Zn-Pb-Cu-(Au-Ag) sulphide deposit, Bergslagen, Sweden

Abstract: The Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, situated in the Palaeoproterozoic (1.9–1.8 Ga) Bergslagen lithotectonic unit in the south-western part of the Fennoscandian Shield, is one of the major base and minor precious metal sulphide deposits in Sweden. Host rocks to the deposit as well as the ores and altered rocks were metamorphosed and affected by heterogeneous ductile strain during the Svecokarelian orogeny the total duration of which was 2.0–1.8 Ga. These processes both reworked the mineral assemblages of the original hydrothermal alteration system and reshaped the structural geometry of the deposit, following formation of the ores and the associated hydrothermal alteration.In order to study primary geological and ore-forming processes at Falun, it is necessary firstly to investigate the nature of the tectonothermal modification. In this licentiate thesis, a three-dimensional modelling approach is used in order to evaluate geometric relationships between lithologies at the deposit. This study demonstrates the polyphase character (D1 and D2) of the strong ductile deformation at Falun. The major rock-forming minerals in the silicate alteration rocks are quartz, biotite/phlogopite, cordierite, anthophyllite, chlorite, and minor almandine and andalusite. On the basis of microstructural investigations, it is evident that these minerals grew during distinct periods in the course of the tectonic evolution, with major static grain growth between D1 and D2, and also after D2. Furthermore, the occurrence of F2 sheath folds along steeply south-south-east plunging axes is suggested as a key deformation mechanism, forming cylindrical, rod-shaped ore bodies which pinch out at depth. The sheath folding also accounts for the same stratigraphic level (footwall) on both the eastern and western sides of the massive sulphide ores. A major, sulphide-bearing high-strain zone defines a tectonic boundary at the deposit and bounds the massive sulphide ores to the north.The geological evolution in the Falun area involved emplacement of felsic sub-volcanic intrusive and volcanic rocks and some carbonate sedimentation; followed by hydrothermal alteration, ore formation and the intrusion of dykes and plutons of variable composition after burial of the supracrustal rocks. Secondary Ion Mass Spectrometry (SIMS) U-Pb (zircon) geochronology of key lithologies in and around the Falun base metal sulphide deposit indicates a rapid sequence of development of different magmatic pulses with individual age determinations overlapping within their uncertainties. The intense igneous activity, as well as the feldspar-destructive hydrothermal alteration and ore formation are constrained by two 207Pb-206Pb weighted average (zircon) ages of 1894 ± 3 Ma for a sub-volcanic host rock not affected by this type of alteration and 1891 ± 3 Ma for a felsic dyke, which cross-cuts the hydrothermally altered zone and is also unaffected by this alteration. All other ages, including the granitic plutonic rocks, fall in the interval between these ages.The lithological, structural and geochronological observations have implications for the environment and the conditions of ore formation at the Falun deposit. Several aspects argue for an ore system resembling a classic volcanogenic massive sulphide (VMS) system in terms of type of alteration, metal zonation, the pyritic character of massive sulphides and an inferred vent-proximal location in relation to the convection-driving magmatic system. The bowl-shaped, sub-seafloor feeder part of such a system might have served as an initial inhomogeneity in the strata for the later development of strong stretching along steep axes and sheath fold formation during ductile strain. Possible discordant relationships along the margins of the massive sulphide ores, coupled with the syn-magmatic, pre-tectonic timing of ore formation are in accordance with a general VMS-type model for the Falun base metal sulphide deposit. These results provide a compromise solution to the previous debate around two opposing models of strictly syn-genetic vs. epigenetic, post-deformational carbonate-replacement processes for ore formation at the deposit.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)