On Adhesion and Galling in Metal Forming

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: Metal forming is widely used in the industry to produce cans, tubes, car chassis, rods, wires etc. Forming certain materials such as stainless steel, aluminium and titanium, is often difficult, and problems associated with transfer of work material to the tool material are frequent. Transferred material may scratch and deform the following manufactured pieces, a phenomenon named galling. Lubricants can, to some degree, solve these problems. However, many forming oils are hazardous to the environment, and therefore it is highly desirable to replace them or get rid of them.This thesis investigates the nature of the galling phenomenon and tries to explain under which conditions such problems arise. Dry sliding tests have been performed in a dedicated load-scanner equipment. Difficult work materials have been tested against tool materials under various conditions and the samples have then been studied by advanced analytical techniques, such as ESCA and TEM, to study the detailed tribological mechanisms occurring in the contact between work and tool material.The general assumption is that material transfer only occurs when there is metal to metal contact. In this work it has been found that, for stainless steel, the oxide plays a very important role for the sticky behaviour of stainless steel, and that metal to metal contact is not a necessary condition for galling.Several PVD-coated tool materials have been tested and it was found that vanadium nitride coatings can be tuned regarding their chemical composition, to be more galling resistant than conventional coatings.The surface roughness of the tool material is very strongly coupled to the tools ability to resist galling. The smoother the tool surface, the less risk of material transfer and galling.Some work materials, like aluminium and titanium, transfer to even the smoothest tool materials. A proposed explanation for this is that their oxides are much harder than the bulk material and the tool material matrix. When deforming the work material, the oxide will fracture into small hard scales, which can indent the tool material. Indented hard scales will then contribute to material transfer of more work material to the tool.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)