Sensitive Forensic DNA Analysis : Application of Pyrosequencing and Real-time PCR Quantification

Abstract: The field of forensic genetics is growing fast and the development and optimisation of more sensitive, faster and more discriminating forensic DNA analysis methods is highly important. In this thesis, an evaluation of the use of novel DNA technologies and the development of specific applications for use in forensic casework investigations are presented.In order to maximise the use of valuable limited DNA samples, a fast and user-friendly Real-time PCR quantification assay, of nuclear and mitochondrial DNA copies, was developed. The system is based on the 5’ exonuclease detection assay and was evaluated and successfully used for quantification of a number of different evidence material types commonly found on crime scenes. Furthermore, a system is described that allows both nuclear DNA quantification and sex determination in limited samples, based on intercalation of the SYBR Green dye to double stranded DNA. To enable highly sensitive DNA analysis, Pyrosequencing of short stretches of mitochondrial DNA was developed. The system covers both control region and coding region variation, thus providing increased discrimination power for mitochondrial DNA analysis. Finally, due to the lack of optimal assays for quantification of mitochondrial DNA mixture, an alternative use of the Pyrosequencing system was developed. This assay allows precise ratio quantification of mitochondrial DNA in samples showing contribution from more than one individual.In conclusion, the development of optimised forensic DNA analysis methods in this thesis provides several novel quantification assays and increased knowledge of typical DNA amounts in various forensic samples. The new, fast and sensitive mitochondrial DNA Pyrosequencing assay was developed and has the potential for increased discrimination power.