Synthesis, Characterization and Application of 68Ga-labelled Peptides and Oligonucleotides

University dissertation from Uppsala : Institute of Chemistry, Department of Organic Chemistry

Abstract: The positron emitting 68Ga radionuclide (T1/2 = 68 min) has the potential of practical interest for clinical PET. The metallic cation, 68Ga3+, is suitable for complexation reactions with chelators either naked or conjugated with macromolecules such as peptides and oligonucleotides. Such labeling procedures require pure and concentrated radiometal preparations, which cannot be sufficiently fulfilled by the presently available 68Ge/68Ga generator eluate. This thesis presents a method to increase the concentration and purity of 68Ga obtained from a commercial 68Ge/68Ga generator. DOTATOC (DOTA = 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid, TOC = D-Phe1-Tyr3–Octreotide) was used as a test molecule for comparing the labeling properties of different 68Ga preparations. In addition, DOTA-RDG (RGD = Cys2-6; c[CH2CO-Lys(DOTA)-Cys-Arg-Gly-Asp-Cys-Phe-Cys]-CCX6-NH2) and NODAGATATE (NODAGA = 1,4,7-triazacyclononane-1,4,7-triacetic, TATE = Tyr3 - Octreotate) were used to prove the concept. The use of the concentrated and purified 68Ga eluate along with microwave activation allowed quantitative 68Ga-labelling of peptide conjugates of ?1 nanomolar quantities within 10 min. The specific radioactivity of the radiolabelled peptides was improved by a factor of>100 compared to previously applied techniques using non-treated generator eluate and conventional heating. A commercial 68Ge/68Ga generator in combination with this method for purification, concentration and microwave activated labeling resulted in a kit technology for 68Ga-tracer production.Four 17-mer oligonucleotides modified and functionalised with an hexylamine group in the 3'- or 5'- position were conjugated with DOTA and labelled with 68Ga using microwave activation. Chemical modification of the oligonucleotide backbone or sugar moiety did not influence the labelling nor the hybridisation ability of the oligonucleotides. However, the radioactivity organ biodistribution in rats differed dependent on the oligonucleotide structure. This indicated that metabolism and non-specific binding were affected by the backbone and sugar moiety structure.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)