An Ontological Approach to support Knowledge Sharing between Product Design and Assembly Process Planning (APP)

Abstract: Modern manufacturing organizations have to cope with several critical issues arising from the need for mass customization such as short product life-cycles, an increasing number of product variants and frequently changing customer requirements. One of the main factors that could aid overcoming those challenges is the use of information and communication technology (ICT) applications over a collaborative manufacturing environment, in which all stakeholders share and exchange knowledge across different manufacturing domains and applications. However, the use of ICT applications over a collaborative manufacturing environment is limited at the domain level by semantic conflicts arising from the use of different ways to describe the same objects and facts arising from different conceptualizations. Similarly, ICT usage is limited on the application level by interoperability problems arising from diverse heterogeneity between different ICT applications and tools.This research presents a semantic approach to support knowledge sharing within the assembly domain. More specifically, this research is focusing on capturing and sharing assembly design knowledge and integrating the assembly design domain and the Assembly Process Planning (APP) domain. Assembly design and APP are very important engineering domains for successful manufacturing system design, which requires an efficient collaborative environment for best utilization of the assembly resources. However, though these domains represent different perspectives in understanding of the same concepts, both domains use different software applications, which might cause interoperability issues.In this thesis, a novel integration approach has been proposed; this approach is composed of two stages: the first stage includes modelling and recognition of assembly knowledge semantics from SolidWorks (SW) CAD software by using SolidWorks’ Application Programmable Interface (SW-API). The second stage includes sharing the recognized assembly knowledge semantics by using a knowledge-based system in the form of a three-layer ontology architecture which provides a common semantic base to support knowledge sharing across assembly design and APP both on the domain and the application level. Each ontology layer shares a set of concepts from the most generic level to the most specialized level. The foundation ontology layer represents the general key concepts in the assembly design and APP domains. More specialized assembly design concepts and APP concepts are represented both in the domain ontology layer, and the application ontology layer. In the latter, concepts related to SolidWorks CAD software and to assembly robotic devices are represented.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)