From Light to Dark Electrical Phenomena in Cu(In,Ga)Se2 Solar Cells

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: In Cu(In,Ga)Se2 (CIGS) solar cells the CIGS layer serves as the light absorber, growing naturally p-type. Together with an n-type buffer layer they form a p-n heterojunction. Typically, CdS is used as a buffer, although other, less toxic materials are investigated as alternatives. The intrinsic p-type doping of CIGS layers is the result of complex defect physics. Defect formation energies in CIGS are very low or even negative, which results in extremely high defect concentrations. This leads to many unusual electrical phenomena that can be observed in CIGS devices. This thesis mostly focuses on three of these phenomena: light-soaking, light-on-bias, and light-enhanced reverse breakdown.Light-soaking is a treatment that involves illuminating the investigated device for an extended period of time. In most CIGS solar cells it results in an improvement of open-circuit voltage, fill factor, and efficiency that can persist for hours, if not days. The interplay between light-soaking and the remaining two phenomena was studied. It was found that light-soaking has a strong effect on light-on-bias behavior, while the results for light-enhanced breakdown were inconclusive, suggesting little to no impact.Light-on-bias is a treatment which combines simultaneous illumination and application of reverse bias to the studied sample. Illuminating CdS-based samples with red light while applying a reverse bias results in a significant increase in capacitance due to filling of traps. In many cases, this is accompanied by a decrease in device performance under red illumination. Complete recovery is possible by illuminating the treated sample with blue light, which causes hole injection from the CdS buffer. In samples with alternative buffer layers, there is little distinction between red and blue illumination, and the increase in capacitance is milder. At the same time, there is little effect on device performance.Reverse breakdown can occur when a sufficiently large reverse bias is applied to a p-n junction, causing a large reverse current to flow through the device. In CIGS solar cells, the voltage at which breakdown occurs in darkness decreases in the presence of blue illumination. A model explaining the breakdown in darkness was proposed as a part of this thesis. The model assumes that all voltage drops on the buffer layer in darkness and on the CIGS layer under blue illumination. The high electric field in the buffer facilitates Poole-Frenkel conduction and Fowler-Nordheim tunneling between the absorber and the buffer.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)