Communicate or die signalling in Drosophila immunity

University dissertation from Umeå : Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten)

Abstract: In general the work behind this thesis has revolved around the interesting pattern recognition gene family PGRPs (peptidoglycan recognition proteins). In particular the transmembrane PGRP-LC and to investigate its multifaceted role in the immune response of the fruit fly. As a well characterized model organism living on, and surrounded by, a multitude of microorganisms, Drosophila melanogaster serves as a great tool to gain insights about innate immunity. The two pillars of Drosophila innate immunity are the humoral and the cellular defense. Together they are very potent and can vanquish many infections, but if one of these pillars is damaged, chances are that the defense will collapse and the organism will succumb to the infection.The initial step in any immune response is to become aware of the pathogen. To accomplish this, innate immunity relies on recognizing common molecular building blocks necessary each group of microorganisms. One such building block is the bacterial cell wall component peptidoglycan. PGRPs are a widely spread gene family, and proteins of this family can bind peptidoglycan. We describe that there are 13 PGRP genes in Drosophila, one these codes for PGRP-LC. As it sits in the cell membrane in any of its three different splice forms, PGRP-LC can bind peptidoglycan, dimerize, and subsequently activate the imd/relish signalling pathway, and thereby trigger a vast production of antimicrobial peptides. These short peptides are the firearms of the humoral response. We identified three new inducible antimicrobial peptide genes, Diptericin B, Attacin C and Attacin D. Analyses of their sequences shed light on the evolution and relationship of these antimicrobial peptidesThe antimicrobial peptides are potent weapons, but without a functional cellular response the animal is at loss. Animals lacking blood cells are gravely compromised. It is interesting to find that PGRP-LC is involved at this end of the immune response equation as well. We have found that PGRP-LC is able to activate blood cells and increase numbers of circulating cells, in a JNK (Jun N-terminal kinase) dependent manner. Intriguingly this activation is not dependent on Relish, the NF-kB transcription factor of the Imd/Relish pathway.PGRP-LC activation funnels into both Imd/Relish and the JNK pathways. When PGRP-LC is lost, it appears that some basal, or background, JNK activation is lost. These effects are very mild, however the animal appears to become more sensitive to additional perturbations in this signalling pathway. This was the starting point when we started to re-evaluate Dredd, the caspase responsible for cleaving and activating Relish. Dredd also contributes to the JNK signalling pathway.