Fundamental investigation to improve the quality of cold mix asphalt

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Cold mix asphalt (CMA) emulsion technology could become an attractive option for the road industry as it offers lower startup and equipment installation costs, energy consumption and environmental impact than traditional alternatives. The adhesion between bitumen and aggregates is influenced by diverse parameters, such as changes in surface free energies of the binder and aggregates or the presence of moisture or dust on the surface of aggregates, mixing temperatures, surface textures (including open porosity), nature of the minerals present and their surface chemical composition, as well as additives in the binder phase. The performance of cold asphalt mixtures is strongly influenced by the wetting of bitumen on surfaces of the aggregates, which is governed by breaking and coalescence processes in bitumen emulsions. Better understanding of these processes is required. Thus, in the work this thesis is based upon, the surface free energies of both minerals/aggregates and binders were characterized using two approaches, based on contact angles and vapor sorption methods. The precise specific surface areas of four kinds of aggregates and seven minerals were determined using an approach based on BET (Brunauer, Emmett and Teller) theory, by measuring the physical adsorption of selected gas vapors on their surfaces and calculating the amount of adsorbed vapors corresponding to monolayer occupancy on the surfaces. Interfacial bond strengths between bitumen and aggregates were calculated based on measured surface free energy components of minerals/aggregates and binders, in both dry and wet conditions.In addition, a new experimental method has been developed to study bitumen coalescence by monitoring the shape relaxation of bitumen droplets in an emulsion environment. Using this method, the coalescence of spherical droplets of different bitumen grades has been correlated with neck growth, densification and changes in surface area during the coalescence process. The test protocol was designed to study the coalescence process in varied environmental conditions provided by a climate-controlled chamber. Presented results show that temperature and other variables influence kinetics of the relaxation process. They also show that the developed test procedure is repeatable and suitable for studying larger-scale coalescence processes. However, possible differences in measured parametric relationships between the bitumen emulsion scale and larger scales require further investigation.There are several different research directions that can be explored for the continuation of the research presented in this thesis. For instance, the rationale of the developed method for analyzing coalescence processes in bitumen emulsions rests on the assumption that the results are applicable to large-scale processes, which requires validation. A linear relationship between the scales is not essential, but it is important to be able to determine the scaling function. Even more importantly, qualitative effects of the investigated parameters require further confirmation. To overcome the laboratory limitations and assist in the determination of appropriate scaling functions further research could focus on the development of a three-dimensional multiphase model to study coalescence processes in more detail, including effects of surfactants, pH and other additives such as mineral fillers and salts. Additionally, better understanding of the breaking process and water-push out could help significantly to optimize CMA mix design. Different methods, both numerical and experimental could be explored for this.