Exploring technologies for service provision in automotive winter testing

Abstract: Vehicles are becoming increasingly more complex in terms of, for example. Electronic Stability Program (ESP), Antilock Braking System (ABS), Traction Control System (TCS), and Active Rollover Protection (ARP), i.e. several different control systems that have to interact to perform well when driving. Hence, efficient testing activities are vital to ensure that the components and systems in the vehicle are functioning as intended. The testing activities at a proving ground initially seem to mainly incorporate technical aspects that focus mainly on the prototype vehicle and its components. However, services related to automotive testing are also important to ensure professional tests where the actors, here called service providers, are those who supply the proving ground and the subsequent services. Tracks to run the tests on are rather obvious, but there is also a need for administrative services, accommodation, logistics, access to local test drivers for endurance tests, mechanics, information and communication technologies, etc. The research presented in this thesis has studied “Which technologies have the potential to contribute to winter testing activities?”, “How can technologies support the testing activities?”, “How can the actors benefit from technology supported winter testing?”, and the guiding vision trough the work has been to contribute to service innovation in winter testing activities. A premise has been that technology, in particular vehicle dynamics and distributed engineering will be useful to contribute to the vision. The research has an explorative approach to winter testing, since previous research in this area is limited. The research, therefore, has embarked from a topic (i.e. vehicle dynamics) rather than a hypothesis. Still, the research project is based on previous research, specifically a technological framework for the transmission of real-time data from test vehicles to development facilities worldwide. The last three years of research used Action Research (AR) Participatory Action Research (PAR) and Participatory and Appreciative AR (PAAR) as a frame of reference, since it was considered important to involve both researcher and participants in the studies to evolve from the experience in the field and participate in group improvement or service provision changes. This approach resulted in the use of extensive empirical data to find supportive technical concepts for the service providers. Service providers were seen to continuously develop services at the proving ground, while looking for ways to provide better services, e.g. safety on the test tracks and correct and relevant information about the weather conditions. However, it can be argued that there is a focus on the more visible facilities, e.g. related to ice and land tracks, as well as a view of services to make people from the automotive industry comfortable when away from home, e.g. tourism and adventures. These are important. Yet, the advancement of automotive systems and more complex vehicles has “gradually” made testing activities more dependent on technologies. In this context, the technological services provided at the proving ground seem more invisible. This can relate to a perspective on technologies as the expertise area of OEM and Tier1. In turn, such a view makes it difficult to proactively take the next step in providing technological support. Yet, in the studies presented in this thesis it is found that the service providers already act as a competent and trusted partner in the testing activities. Further, the studies show that an upcoming challenge for OEM and Tier1 is the issue of developing well-defined methods to standardize tests. This is one opportunity for service providers to provide new or extended services. Therefore, in this thesis, Remote Test Management, steering robots and objective evaluation of vehicles are explained technically and outlined as being part of such service innovation.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.