Aberration-Corrected Analytical Electron Microscopy of Transition Metal Nitride and Silicon Nitride Multilayers

University dissertation from Linköping : Linköping University Electronic Press

Abstract: Two multilayer thin films have been studied: TiN/SiNx and ZrN/SiNx. A double-corrected transmission electron microscope (TEM) was utilized for imaging and spectroscopy. Imaging was carried out in scanning mode (STEM) for all samples. Energy dispersive X-ray (EDX) spectrometry was used for chemical mapping of the ZrN/SiNx samples and electron energy loss spectrometry (EELS) for atomic coordination of the nitrogen in the TiN/SiNx samples.In the TiN/SiNx multilayer the structure of the epitaxially stabilized cubic SiNx was investigated. The high-resolution STEM images were compared with image simulations of SiNx in B1 (sodium chloride) and B3 (zinc blende) configurations and were found to be most similar to the B1 configuration. Core-loss EEL spectra were compared with calculated spectra and corroborated a resemblance with the B1 configuration.The ZrN/SiNx multilayers were initially believed to show a similarity to TiN/SiNx but further investigations with STEM showed that the SiNx is amorphous. For samples deposited at 800 °C a SiNx layer thickness ?6 Å the SiNx forms precipitates at grain boundaries and surface defects of the ZrN resulting in a columnar distribution of the SiNx, which was further revealed by EDX. For such samples the ZrN grows by epitaxial lateral overgrowth. For samples deposited at 800 °C but with a SiNx layer thickness of 6 Å the SiNx starts to form more laterally extending layers and for thicknesses ?8 Å the SiNx grows into continuous, amorphous layers causing the following ZrN layers to assume a polycrystalline microstructure. The transition from epitaxial ZrN with columnar, amorphous SiNx, to multilayers of polycrystalline ZrN and amorphous SiNx layers appears at an even smaller thickness of SiNx if the  deposition temperature is lowered, which is explained by the lowered adatom mobility.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)