Outer membrane proteins of Yersinia pestis Ail and OmpA

University dissertation from Umeå : Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet), Umeå universitet

Abstract: A vast number of studies have been completed on the virulence determinants of Yersinia spp.; however, the focus of many of these studies has been on the virulence plasmid and the plasmid-encoded Type three secretion system. Nevertheless, many chromosomal genes whose products are directly involved in virulence have also been identified. Some of these critical virulence determinants are outer membrane proteins. Outer membrane proteins of Gram-negative bacteria often have important physiological roles; however, some have also been found to be important for pathogenesis. In this thesis, we investigated two Yersinia. pestis outer membrane proteins, Ail and OmpA, and their roles in virulence. We provide evidence that Y. pestis Ail is a highly expressed outer membrane protein that is absolutely essential for Y. pestis to resist the killing action of the complement system present in human blood and tissues, as well as the blood and tissues of other mammalian hosts. Furthermore, Ail was important for virulence in a Y. pestis-Canorhabditis elegans model of infection.The work in this thesis also provided the first evidence that another surface-exposed outer membrane protein, termed OmpA, is required for both Yersinia pseudotuberculosis and Y. pestis to survive and proliferate intracellularly in macrophages. Finally, we provide evidence that Y. pestis has a functional small RNA MicA that controls the expression of OmpA. This is the first demonstration of sRNA-mediated regulation of a Yersinia virulence factor. This work has paved the way for future studies on the role of outer membrane proteins in virulence, particularly the role of Ail and OmpA.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)