Architectural Evolution of Intelligent Transport Systems (ITS) using Cloud Computing

University dissertation from Karlstad : Karlstads universitet

Abstract: With the advent of Smart Cities, Intelligent Transport System (ITS) has become an efficient way of offering an accessible, safe, and sustainable transportation system. Utilizing advances in Information and Communication Technology (ICT), ITS can maximize the capacity of existing transportation system without building new infrastructure. However, in spite of these technical feasibilities and significant performance-cost ratios, the deployment of ITS is limited in the real world because of several challenges associated with its architectural design.This thesis studies how to design a highly flexible and deployable architecture for ITS, which can utilize the recent technologies such as - cloud computing and the publish/subscribe communication model. In particular, our aim is to offer an ITS infrastructure which provides the opportunity for transport authorities to allocate on-demand computing resources through virtualization technology, and supports a wide range of ITS applications. We propose to use an Infrastructure as a Service (IaaS) model to host large-scale ITS applications for transport authorities in the cloud, which reduces infrastructure cost, improves management flexibility and also ensures better resource utilization. Moreover, we use a publish/subscribe system as a building block for developing a low latency ITS application, which is a promising technology for designing scalable and distributed applications within the ITS domain. Although cloud-based architectures provide the flexibility of adding, removing or moving ITS services within the underlying physical infrastructure, it may be difficult to provide the required quality of service (QoS) which decrease application productivity and customer satisfaction, leading to revenue losses. Therefore, we investigate the impact of service mobility on related QoS in the cloud-based infrastructure. We investigate different strategies to improve performance of a low latency ITS application during service mobility such as utilizing multiple paths to spread network traffic, or deploying recent queue management schemes.Evaluation results from a private cloud testbed using OpenStack show that our proposed architecture is suitable for hosting ITS applications which have stringent performance requirements in terms of scalability, QoS and latency.