Natural products from nonracemie building blocks : synthesis of pine sawfly pheromones

Abstract: This thesis describes a number of synthetic approaches for obtaining chiral, enantiomerically pure natural products, in particular some semiochemicals. This has been accomplished by using various strategies; by starting from compounds from the chiral pool, by using chiral auxiliaries, via enzymatic resolutions or by chemical asymmetric synthesis. Hence, the sexual pheromone of Microdiprion pallipes, a propanoate ester of one or several isomers of 3,7,11-trimethyltridecan-2-ol, was synthesised, both as a mixture of all isomers and as the sixteen pure, individual stereoisomers. These compounds were obtained by joining different enantiopure building blocks stemming from the chiral pool. When compared with some synthetic blends, both the propanoate esters of the stereoisomeric erythro-3,7,11-trimethyltridecan-2-ols originally found in the extract from the female of M. pallipes, surprisingly, showed lower activities in biological studies. Indeed, the propanoates of two threo-isomers gave significantly higher responses in biological tests, than did the propanoates of the two natural erythro-ones. Because the synthetic strategy used earlier was not very efficient for the preparation of the threo-isomers of 3,7,11-trimethyltridecan-2-ol, we were encouraged to look for alternative synthetic approaches. The new synthetic strategy chosen led us to two key synthetic building blocks, an O-protected derivative of (2S,3S)-3-methyl-4-(phenylsulfonyl)butan-2-ol butanol and (3R,7R)-1-iodo-3,7-dimethylnonane. Deprotonation of the former followed by alkylation with the latter should give a compound with the desired carbon skeleton. For efficient preparation of the first building block, we developed a new diastereoselective addition reaction of dialkylzincs to some chiral aldehydes, the products of which were diastereomerically enriched 1,2-dialkyl-alkanols. Using this method, each enantiomer of the desired building block was obtained via efficient diastereoselective addition of dimethylzinc to each enantiomer of a 2-methylaldehyde. The resulting product, a diastereomerically and enantiomerically highly enriched 3-methyl-2-alkanol was further purified by enzyme catalysed acylation followed by some functional group interconversions. The second building block was prepared via convergent multistep synthesis, starting from a single, enantiomerically pure compound, (R)-2-methylsuccinic acid 4-t-butyl ester, derived from the chiral pool. The two enantiomerically pure building blocks, so obtained, were coupled together. Some additional functional group manipulations of the product produced furnished the desired isomer, which had shown the highest activity in field tests of the M. pallipes, namely the propanoate ester of (2S,3R,7R,11R)-3,7,11-trimethyltridecan-2-ol. This thesis describes a number of synthetic approaches for obtaining chiral, enantiomerically pure natural products, in particular some semiochemicals. This has been accomplished by using various strategies; by starting from compounds from the chiral pool, by using chiral auxiliaries, via enzymatic resolutions or by chemical asymmetric synthesis. Hence, the sexual pheromone of Microdiprion pallipes, a propanoate ester of one or several isomers of 3,7,11-trimethyltridecan-2-ol, was synthesised, both as a mixture of all isomers and as the sixteen pure, individual stereoisomers. These compounds were obtained by joining different enantiopure building blocks stemming from the chiral pool. When compared with some synthetic blends, both the propanoate esters of the stereoisomeric erythro-3,7,11-trimethyltridecan-2-ols originally found in the extract from the female of M. pallipes, surprisingly, showed lower activities in biological studies. Indeed, the propanoates of two threo-isomers gave significantly higher responses in biological tests, than did the propanoates of the two natural erythro-ones. Because the synthetic strategy used earlier was not very efficient for the preparation of the threo-isomers of 3,7,11-trimethyltridecan-2-ol, we were encouraged to look for alternative synthetic approaches. The new synthetic strategy chosen led us to two key synthetic building blocks, an O-protected derivative of (2S,3S)-3-methyl-4-(phenylsulfonyl)butan-2-ol butanol and (3R,7R)-1-iodo-3,7-dimethylnonane. Deprotonation of the former followed by alkylation with the latter should give a compound with the desired carbon skeleton. For efficient preparation of the first building block, we developed a new diastereoselective addition reaction of dialkylzincs to some chiral aldehydes, the products of which were diastereomerically enriched 1,2-dialkyl-alkanols. Using this method, each enantiomer of the desired building block was obtained via efficient diastereoselective addition of dimethylzinc to each enantiomer of a 2-methylaldehyde. The resulting product, a diastereomerically and enantiomerically highly enriched 3-methyl-2-alkanol was further purified by enzyme catalysed acylation followed by some functional group interconversions. The second building block was prepared via convergent multistep synthesis, starting from a single, enantiomerically pure compound, (R)-2-methylsuccinic acid 4-t-butyl ester, derived from the chiral pool. The two enantiomerically pure building blocks, so obtained, were coupled together. Some additional functional group manipulations of the product produced furnished the desired isomer, which had shown the highest activity in field tests of the M. pallipes, namely the propanoate ester of (2S,3R,7R,11R)-3,7,11-trimethyltridecan-2-ol. This thesis describes a number of synthetic approaches for obtaining chiral, enantiomerically pure natural products, in particular some semiochemicals. This has been accomplished by using various strategies; by starting from compounds from the chiral pool, by using chiral auxiliaries, via enzymatic resolutions or by chemical asymmetric synthesis. Hence, the sexual pheromone of Microdiprion pallipes, a propanoate ester of one or several isomers of 3,7,11-trimethyltridecan-2-ol, was synthesised, both as a mixture of all isomers and as the sixteen pure, individual stereoisomers. These compounds were obtained by joining different enantiopure building blocks stemming from the chiral pool. When compared with some synthetic blends, both the propanoate esters of the stereoisomeric erythro-3,7,11-trimethyltridecan-2-ols originally found in the extract from the female of M. pallipes, surprisingly, showed lower activities in biological studies. Indeed, the propanoates of two threo-isomers gave significantly higher responses in biological tests, than did the propanoates of the two natural erythro-ones. Because the synthetic strategy used earlier was not very efficient for the preparation of the threo-isomers of 3,7,11-trimethyltridecan-2-ol, we were encouraged to look for alternative synthetic approaches. The new synthetic strategy chosen led us to two key synthetic building blocks, an O-protected derivative of (2S,3S)-3-methyl-4-(phenylsulfonyl)butan-2-ol butanol and (3R,7R)-1-iodo-3,7-dimethylnonane. Deprotonation of the former followed by alkylation with the latter should give a compound with the desired carbon skeleton. For efficient preparation of the first building block, we developed a new diastereoselective addition reaction of dialkylzincs to some chiral aldehydes, the products of which were diastereomerically enriched 1,2-dialkyl-alkanols. Using this method, each enantiomer of the desired building block was obtained via efficient diastereoselective addition of dimethylzinc to each enantiomer of a 2-methylaldehyde. The resulting product, a diastereomerically and enantiomerically highly enriched 3-methyl-2-alkanol was further purified by enzyme catalysed acylation followed by some functional group interconversions. The second building block was prepared via convergent multistep synthesis, starting from a single, enantiomerically pure compound, (R)-2-methylsuccinic acid 4-t-butyl ester, derived from the chiral pool. The two enantiomerically pure building blocks, so obtained, were coupled together. Some additional functional group manipulations of the product produced furnished the desired isomer, which had shown the highest activity in field tests of the M. pallipes, namely the propanoate ester of (2S,3R,7R,11R)-3,7,11-trimethyltridecan-2-ol.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)