Generation and characterization of Affibody molecules targeting HER3

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: In the field of oncology, the ability to target specific tumor cells using highly selective targeting molecules is an attractive and emerging concept. In this context, the epidermal growth factor receptor HER3 has proven central to the biology behind many different human cancers and inhibition of the signaling mediated by this receptor could provide antitumoral effects. Consequently, this receptor has emerged as a suitable target for imaging, functional blocking or delivery of toxic payloads. A promising targeting-molecule for such applications is the small non-immunoglobulin derived Affibody molecule. The work upon which this thesis is based, revolves around HER3 with the aim to generate and characterize Affibody molecules targeting this receptor. In the first study, HER3-specific Affibody molecules were generated by combinatorial protein engineering using a combined approach where first generation binders were isolated from a phage-displayed naive library, followed by affinity maturation of these binders using a focused staphylococcal surface-displayed library and flow-cytometric cell sorting. This engineering strategy enabled the successful isolation of HER3-specific Affibody molecules with subnanomolar affinities for the receptor and the ability to compete with the natural ligand heregulin (HRG) for binding to HER3. In the second study, the cellular effects of these Affibody molecules were characterization in vitro. The results demonstrated that the ability to inhibit HRG-binding to the receptor translated into inhibition of ligand-induced phosphorylation of HER3, HER2 as well as the downstream signaling molecules Akt and Erk. As a result, the HER3-specific Affibody molecules also inhibited HRG-induced cell growth of two different breast cancer cell lines in vitro. These promising results, suggested that the HER3-targeting Affibody molecules could have a therapeutic effect in tumors that are dependent on ligand-induced signaling of HER3. However, due to the relatively low expression level of HER3 on tumor cells, we explored two different engineering approaches of the HER3-specific Affibody molecules in order to potentially improve its tumor targeting ability. One approach was to construct bispecific Affibody molecules where a HER3- and a HER2-specific Affibody molecule were fused on each side of an albumin-binding domain (ABD). In the third study, one such bispecific construct was shown to have increased ability to inhibit ligand-induced phosphorylation of HER2 and retained ability to inhibit HRG-induced activation of HER3, as compared to the monomeric anti-HER3 Affibody. Another strategy was to further increase the affinity of the HER3-specific Affibody molecules towards the receptor through a semi-rational affinity maturation approach. In the fourth study, a staphylococcal displayed affinity maturation library was screened by FACS using an off-rate selection procedure. This approach resulted in the successful isolation of picomolar HER3-binders with improved potency of inhibiting HRG-induced cell growth as compared to a first generation binder. Moreover, in the fifth study, in vivo characterization of these HER3-specific Affibody molecules was performed in both normal and xenograft mice. The results suggested specific targeting of HER3 in vivo and provided the first evidence of successful tumor imaging using a HER3-specific Affibody. Taken together, the work included in this thesis describes (to our knowledge) the first non-immunoglobulin derived affinity protein targeting HER3, with promising features for both therapeutic and imaging applications.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)