Studies on Redox-proteins and Cytokines in inflammation and Cancer

University dissertation from Institutionen för biomedicin och kirurgi

Abstract: The redox state in the cell plays a major role in determining vital functions and its major imbalance can lead to severe cell injury or death. Redox active proteins and cytokines involved in this process includes thioredoxin (Trx), protein disulfide isomerase (PDI), and tumor necrosis factor (TNF) superfamilies. Trx is a multipotent protein and key regulator of cellular redox balance operating in synergy with Trx reductase and NADPH (the Trx system). Trx has gene regulatory activity of several transcription factors. It also controls in a fascinating way redox-sensitive “on-off” decisions for apoptotic or hypertrophic pathways. Trx protects against H2O2 and TNFmediated cytotoxicity, a pathway in which TNF receptor-binding generates ROS. TNF is an autocrine growth factor and survival factor in vitro and in vivo for B-type of chronic lymphocytic leukemia (B-CLL) cells. The overall aim of this study was to investigate the importance of redox active proteins and cytokines in inflammation and cancer. We focused on: i) the role of Trx, TrxR, and selenium in carcinogenesis and in resistant cancer cells. ii) the importance of Trx in cancer cells and the redox regulation of TNF and its receptors TNFR1 and TNFR2. iii) the potential role of Trx as a key regulator in cellular redox balance, in the pathogenesis of cardiac dysfunction; its relationship to stress response parameters. iv) whether unmutated CLL (UCLL) responses to PKC and ROS pathways were different from mutated CLL (M-CLL) responses.Our results demonstrate pronounced selective selenium-mediated apoptosis in therapy resistant cells and suggest that redox regulation through the Trx system is an important target for cancer therapy. Trx was strikingly elevated in heart failure cases compared with controls signifying an adaptive stress response that is higher the more severe the disease. TNF autocrine release was redox modulated and the TNF receptors interacted at the cell surface membrane with the redox-active PDI, which excerted a stringent redox-control of the TNFR signaling. The proliferative response as well as increase of autocrine TNF and Trx were higher in U-CLL than in M-CLL.The overall conclusion of the four papers included in this thesis is that redox-active proteins and cytokines plays an important role in control and regulation of cancer and inflammation. Furthermore, redox regulation via thioredoxin by selenium, may offer novel treatment possibilities for resistant tumors disease.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)