Development of rotation electron diffraction as a fully automated and accurate method for structure determination

Abstract: Over the past decade, electron diffraction methods have aroused more and more interest for micro-crystal structure determination. Compared to traditional X-ray diffraction, electron diffraction breaks the size limitation of the crystals studied, but at the same time it also suffers from much stronger dynamical effects. While X-ray crystallography has been almost thoroughly developed, electron crystallography is still under active development. To be able to perform electron diffraction experiments, adequate skills for using a TEM are usually required, which makes ED experiments less accessible to average users than X-ray diffraction. Moreover, the relatively poor data statistics from ED data prevented electron crystallography from being widely accepted in the crystallography community.The thesis focused on both application and method development of continuous rotation electron diffraction (cRED) technique. The cRED method was first applied to a beam sensitive metal-organic framework sample, Co-CAU-36, and the structure was determined and refined within one working day. More importantly, the guest molecules in the pores were also located using only electron diffraction data. To facilitate general users to perform cRED data collection for useful data, software was developed to automate the overall data collection procedure. Through combination of hierarchical cluster analysis tools, the automatically collected data showed comparable quality to those from recent publications, and thus were useful for structure determination and even phase identification. To deal with dynamical refinement for ED data, a frame orientation refinement algorithm was designed to calculate accurate frame orientations for rotation data. Accuracy for the method was validated and compared to an existing software, and the behavior of TEM goniometer was studied by applying the method to an experimental data set.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)