Region-Specific Consumption-Based Environmental Impact: Hotspot Identification Using Hybrid MFA-LCA

Abstract: The environmental impacts caused by rising consumption are pressing problems for society today. Decision makers are tasked with setting and meeting environmental targets to ensure that future generations have access to the same quality of resources (like clean water and air) that we have today. Limiting factors like time and funding exacerbate the challenge of meeting these goals. In this thesis, city- and region-specific consumption data are analyzed to identify consumption-based impact hotspots, i.e. product categories with high environmental impact, and to show how this data is relevant for policy development, prioritization, and assessment. Many studies primarily look at climate change as the sole impact indicator while multiple factors can and do affect the environment. To fill this gap, material flow analysis (MFA), which provides data on the quantities of products consumed in a region, is combined with life cycle assessment (LCA) to quantify the environmental impact of a region’s consumption. Five environmental indicators are evaluated: global warming potential (climate change), eutrophication potential, acidification potential, photochemical ozone formation potential, and resource depletion. Consumption-based environmental impact results are used to identify hotspots and prioritize existing environmental measures. The results indicate that cities and regions have distinct consumption profiles and that local consumption data is relevant for identifying which products should be addressed in order to maximize the environmental benefit. Existing environmental measures for the city of Gothenburg, Sweden, are assessed for effectiveness in reaching environmental targets.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.