Detailed Numerical Simulations of Turbulent Premixed Flames at Moderate and High Karlovitz Numbers

Abstract: Popular Abstract in Swedish Förblandad förbränning har sedan lång tid tillbaka varit en av grundbultarna i industriellt applicerad förbränning såsom i bensinmotorer och gasturbiner. Genom att direkt kunna kontrollera blandningsförhållandet mellan bränsle och luft kan utsläppen av skadliga ämnen hållas på en minimal nivå. Detta gör förblandad förbränning mycket attraktiv. För att industriellt applicerad förblandad förbränning ska kunna ge en signifikant effekt är det viktigt att förbränningen sker tillräcklig snabbt och därför används nästan alltid en turbulent omgivning, till exempel, i en bensinmotor måste allt bränsle brinna upp innan avgaserna trycks ut ur cylindern. För att på samma gång uppnå hög effekt, hög verkningsgrad och låga emissioner finns det en trend i industriella applikationer att gå mot allt magrare blandningsförhållanden och mer högintensiv turbulens. Växelverkan mellan flamma och turbulens vid dessa förhållanden är dock inte välförstådd och få numeriska modeller är utvecklade för att hantera denna typ av förbränning. I denna avhandling används detaljerade numeriska simuleringar för att undersöka växelverkan mellan förblandade flammor och turbulens vid måttliga och höga turbulenta intensiteter. Direkt numerisk simulering (DNS) används för att studera grundläggande fysikaliska fenomen i högintensiva turbulenta flammor där samtliga skalor i både turbulens och detaljerad kemi är inkluderade med minimal modellering. Simuleringarna visar att på grund av ökad turbulent transport ökas mängden radikaler i lågtemperaturzonen i flamman, vilket i sin tur kan ge upphov till hög värmefrigörelse även vid låga temperaturer. Detta har aldrig påvisats vid låga turbulenta intensiteter. I och med att dessa fenomen uppstår från den komplicerade kemin som är involverad i förbränningsprocessen visar resultaten också att konventionell klassificering av turbulenta förblandade flammor inte kan förklara skillnaderna i radikallagrens växelverkan med turbulens mellan två studerade flammor. Ett nytt dimensionslöst tal definierades därför för att kunna ta effekter från detaljerad kemi i beaktande. För studier av växelverkan mellan flamma och turbulens vid måttliga turbulenta intensiteter användes metoden large eddy simulation (LES) med en förbränningsmodell baserad på G-ekvationen. Denna förbränningsmodell är väl testad för mycket låga turbulenta intensiteter där turbulent transport inuti flamman är försumbar och i denna avhandling testades modellen för något högre turbulenta intensiteter. En experimentell brännare med tillgång på valideringsdata användes som testfall och med en dynamisk implementering av den lokala skrynklingen av flamman i förbrännings-modellen uppvisade den mycket god jämförelse med den experimentella datan även vid relativt höga Reynolds tal. Modellen användes sedan för att studera växelverkan mellan flamma och frekvensspecifika koherenta strukturer där en vidareutvecklad version av dynamisk moduppdelning kunde hjälpa förståelsen för flammans stabiliseringsmekanism i den experimentella brännaren.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)