Monitoring Proton Exchange and Triplet States with Fluorescence

University dissertation from Stockholm : KTH

Abstract: Fluorescent molecules commonly shift to transient dark states, induced bylight or triggered by chemical reactions. The transient dark states can beused as probes of the local environment surrounding the fluorescent molecules,and are therefore attractive for use in biomolecular applications. Thisthesis explores the use and development of novel fluorescence spectroscopictechniques for monitoring transient dark states.This work demonstrates that kinetic information regarding photoinduced transient dark states of fluorescent molecules can be obtained from the time-averaged fluorescence intensity of fluorescent molecules subject totemporally modulated illumination. Methods based on this approach havethe advantage that the light detectors can have a low time resolution, which allows for parallelization and screening of biomolecular interactions withhigh throughput. Transient state images are presented displaying local environmental differences such as those in oxygen concentration and quencher accessibility.Analysis of the fluorescence intensity fluctuations resulting from thetransitions to and from transient dark states can be used to obtain information regarding the transition rates and occupancy of the transient darkstates. Fluorescence fluctuation analysis was used to reveal rates of protonbinding and debinding to single fluorescent molecules located close to biological membranes and protein surfaces. The results from these studies show that the proton exchange rate increases dramatically when the fluorescent molecule is close to the membrane.