Selection and use of affinity proteins developed by combinatorial engineering

Abstract: In affinity protein biotechnology the selective bindingbetween a chosen protein and an interacting biomolecule isutilized for a variety of applications including bioseparation,detection and therapy. Traditionally, affinity proteinsrecruited for such applications have been derived from naturalproteins or immunoglobulins generated via immunization routes.More recently, advances in the construction and handling oflarge collections of proteins(denoted libraries) generated invitro have opened up for new routes for the development ofaffinity proteins with desired properties.In this study, phage display selection technology was usedfor the isolation of novel human CD28 (hCD28)-specific affinityproteins from a protein library constructed by combinatorialprotein engineering of a 58 aa protein domain (Z) derived fromstaphylococcal protein A (SPA). From selections using hCD28 asa target molecule, several hCD28-specific affinity proteins(denoted affibodies) could be identified and analysis of theisolated affibody variants revealed a high degree of sequencehomology between the different clones. The biosensor analysisshowed that all variants bound to hCD28 with micromolardissociation constants (KD) and no significant cross-reactivitytowards the structurally related T-cell receptor hCTLA-4 couldbe observed. The apparent binding affinity for hCD28 of one ofthe isolated affibodies was further improved through fusion toa human Fc fragment fusion partner, resulting in a homodimericversion of the affibody ligand showing avidity effects uponhCD28 binding. Further, a co-culture experiment involvingJurkat T-cells and CHO cell lines tranfected to express eitherhuman CD80 or LFA-3 on the cell surface showed that apreincubation of Jurkat cells with one of the affibody variantsresulted in a specific concentration-dependent inhibition ofthe CD80 induced IL-2 production. This indicates that thisaffibody binds to hCD28 and specifically interferes with theco-stimulation signal mediated via hCD28 and hCD80. ACD28-specific binding protein could have potential as an agentfor various immunotherapy applications. In a second study, anaffinity protein-based strategy was investigated forsite-specific anchoring of proteins onto cellulose for woodfiber engineering purposes. Here, affinity proteins derivedfrom different sources were used for the assembly of acellulosome-like complex for specific and reversible anchoringof affinity domain-tagged reporter proteins to acellulose-anchored fusion protein. A fusion protein between acellulose binding module (Cel6A CBM1) derived from the fungalTrichoderma reesei and a five-domain staphylococcal protein A(SPA) moiety was constructed to serve as a platform for thedocking of reporter proteins produced as fusion to two copiesof a SPA-binding affibody affinity protein (denoted ZSPA-1),selected by phage display technology from a Z domain basedprotein library. In a series of experiments, involving repeatedwashing and low pH elutions, affinity tagged Enhanced GreenFluorescent Protein (EGFP) and Fusarium solani pisi lipasecutinase reporter proteins were both found to be specificallydirected from solution to a region of a cellulose-based filterpaper where the SPA-CBM fusion protein previously had beenpositioned. This showed that the cellulose-anchored SPA-Cel6ACBM1 fusion protein had been stably anchored to the surfacewith retained binding activity and that the interaction betweenSPA and the ZSPA-1 affibody domain was selective.phage display, combinatorial, selection, CD28, cellulosome,cellulose, affibody

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)