Creation of new proteins - domain rearrangements and tandem duplications

University dissertation from Stockholm : Department of Biochemistry and Biophysics, Stockholm University

Abstract: Proteins are modular entities with domains as their building blocks. The domains are recurrent protein fragments with a distinct structure, function and evolutionary history. During evolution, proteins with new functions have been invented through rearrangements as well as differentiation of domains. The focus of this thesis is to gain better understanding of the processes that govern domain rearrangements. In particular, the rearrangements that create long protein domain repeats have been investigated in detail.We estimate that about 65% of the eukaryotic and 40% of the prokaryotic proteins are of the multidomain type. Further, we find that the eukaryotic multidomain proteins are mainly created through insertion of a single domain at the N- or C-terminus. However, domain repeats differ from other domain rearrangements in the aspect that they are created from internal tandem duplications. We show that such duplications often involve several domains simultaneously, and that different repeated domain families show distinct evolutionary patterns. Finally, we have investigated how large repeat regions are created using a specific example; the Actin binding nebulin domain. The analysis reveals several tandem duplications of both single nebulin domains and super repeats of seven nebulins in a number of vertebrates. We see that the duplication breakpoints vary between the species and that multiple duplications of the same region are common.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.