Ageing behaviour of steel slags in landfill liners

Abstract: Steel slags are by-products of the steelmaking process. To avoid unnecessary disposal, e.g. into landfill, their chemical and physical properties should be exploited to support alternative uses. Steel slags can be recycled within the steel plant or used as construction material in roads, hydraulic engineering and different types of barriers, including landfill covers. A landfill cover consists of several layers, including a liner with low water and gas permeability in order to reduce methane and leachate emissions. Several studies have demonstrated that steel slags have good potential to fulfil such an application. However, there are questions regarding the stability of the slag minerals over long periods of time. A landfill cover must function well for many decades and centuries. In order to predict the long-term stability of steel slags as a landfill liner, laboratory experiments have been performed to study the effects of accelerated ageing of steel slag under controlled conditions. The factors investigated in the storage atmosphere were carbon dioxide content, relative humidity and temperature. The influence of leachate contact and ageing time were also assessed.This thesis reports the study of electric arc furnace slags and ladle slag from the production of high-alloyed tool steel after accelerated ageing for periods of three months and ten months. Mineralogy and leaching were studied using two different leaching tests, thermal analysis, acid-neutralization capacity assays and X-ray diffraction. For the ageing periods considered, the exposure of the slags to an atmosphere enriched with carbon dioxide had the greatest impact on leaching. In general, calcium, aluminium, sulphur and sodium leached from the slag matrix to the greatest extent while other metals such as chromium, nickel, lead and zinc were found at very low levels in the leachate. The leaching of calcium and aluminium reduced with increasing carbon dioxide level. Thermal analysis revealed the decomposition of carbonates. Weight and enthalpy changes were evaluated between 100 and 1000 °C. The buffer capacity of the steel slags, represented by the acid neutralization capacity (ANC 4.5) was not reduced after 10 months of ageing. However, the division of the titration into two steps revealed a shift of buffering zones for more highly aged samples, probably due to the formation of carbonates. The mineralogy of the investigated steel slags was complex with a large variety of mineral phases, principally calcium silicates, monticellite, periclase and a spinel phase. Other possible phases were gehlenite, merwinite, akermanite and iron. The existence of different solid solution is likely among the slag phases and can cause shifting of peaks in the X-ray diffractogram. Also, calcite was identified. Short-term carbonation has not shown significant impact on mineralogy despite of calcite formation. The results of the study contribute to a better understanding of the chemical and mineral stability of electric arc furnace slag and ladle slag in the environment of a landfill liner. The consequences of slag ageing include reduced leaching rates for certain elements. To predict the long-term behaviour of aged slag, the results of this study should be combined with data from two other sources - an ongoing ageing experiment that includes mechanical tests and a full scale field test at the Hagfors landfill. Additional analytical methods that can better characterise the mineralogy, for example scanning electron microscopy (SEM) and energydispersive X-ray spectroscopy (EDX), should also be applied to better quantify the mineralogical phases and to determine which trace elements are most abundant in specific minerals.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)