Transport-Layer Performance for Applications and Technologies of the Future Internet

University dissertation from Karlstad : Karlstads universitet

Abstract: To provide Internet applications with good performance, the transport protocol TCP is designed to optimize the throughput of data transfers. Today, however, more and more applications rely on low latency rather than throughput. Such applications can be referred to as data-limited and are not appropriately supported by TCP. Another emerging problem is associated with the use of novel networking techniques that provide infrastructure-less networking. To improve connectivity and performance in such environments, multi-path routing is often used. This form of routing can cause packets to be reordered, which in turn hurts TCP performance.To address timeliness issues for data-limited traffic, we propose and experimentally evaluate several transport protocol adaptations. For instance, we adapt the loss recovery mechanisms of both TCP and SCTP to perform faster loss detection for data-limited traffic, while preserving the standard behavior for regular traffic. Evaluations show that the proposed mechanisms are able to reduce loss recovery latency with 30-50%. We also suggest modifications to the TCP state caching mechanisms. The caching mechanisms are used to optimize new TCP connections based on the state of old ones, but do not work properly for data-limited flows. Additionally, we design a SCTP mechanism that reduces overhead by bundling several packets into one packet in a more timely fashion than the bundling normally used in SCTP.To address the problem of packet reordering we perform several experimental evaluations, using TCP and state of the art reordering mitigation techniques. Although the studied mitigation techniques are quite good in helping TCP to sustain its performance during pure packet reordering events, they do not help when other impairments like packet loss are present.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)