Stress, Flow and Particle Transport in Rock Fractures

University dissertation from Stockholm : KTH

Abstract: The fluid flow and tracer transport in a single rock fracture during shear processes has been an important issue in rock mechanics and is investigated in this thesis using Finite Element Method (FEM) and streamline particle tracking method, considering evolutions of aperture and transmissivity with shear displacement histories under different normal stresses, based on laboratory tests.The distributions of fracture aperture and its evolution during shear were calculated from the initial aperture fields, based on the laser-scanned surface roughness features of replicas of rock fracture specimens, and shear dilations measured during the coupled shear-flow-tracer tests in laboratory performed using a newly developed testing apparatus in Nagasaki University, Nagasaki, Japan. Three rock fractures of granite with different roughness characteristics were used as parent samples from which nine plaster replicas were made and coupled shear-flow tests was performed under three normal loading conditions (two levels of constant normal loading (CNL) and one constant normal stiffness (CNS) conditions). In order to visualize the tracer transport, transparent acrylic upper parts and plaster lower parts of the fracture specimens were manufactured from an artificially created tensile fracture of sandstone and the coupled shear-flow tests with fluid visualization was performed using a dye tracer injected from upstream and a CCD camera to record the dye movement. A special algorithm for treating the contact areas as zero-aperture elements was used to produce more accurate flow field simulations by using FEM, which is important for continued simulations of particle transport, but was often not properly treated in literature. The simulation results agreed well with the flow rate data obtained from the laboratory tests, showing that complex histories of fracture aperture and tortuous flow channels with changing normal stresses and increasing shear displacements, which were also captured by the coupled shear-flow tests of fracture specimens with visualization of the fluid flow. From the obtained flow velocity fields, the particle transport was predicted by the streamline particle tracking method with calculated flow velocity fields (vectors) from the flow simulations, obtaining results such as flow velocity profiles, total flow rates, particle travel time, breakthrough curves and the Péclet number, Pe, respectively.The fluid flow in the vertical 2-D cross-sections of a rock fracture was also simulated by solving both Navier-Stokes (NS) and Reynolds equations, and the particle transport was predicted by streamline particle tracking method. The results obtained using NS and Reynolds equations were compared to illustrate the degree of the validity of the Reynolds equation for general applications in practice since the later is mush more computationally efficient for large scale problems. The flow simulation results show that the total flow rate and the flow velocity predicted by NS equations are quite different from that as predicted by the Reynolds equation. The results show that a roughly 5-10 % overestimation on the flow rate is produced when the Reynolds equation is used, and the ideal parabolic velocity profiles defined by the local cubic law, when Reynolds equation is used, is no longer valid, especially when the roughness feature of the fracture surfaces changes with shear. These deviations of flow rate and flow velocity profiles across the fracture aperture have a significant impact on the particle transport behavior and the associated properties, such as the travel time and Péclet number. The deviations increase with increasing flow velocity and become more significant when fracture aperture geometry changes with shear.The scientific findings from these studies provided new insights to the physical behavior of fluid flow and mass transport in rock fractures which is the scientific basis for many rock mechanics problems at the fundamental level, and with special importance to rock engineering problems such as geothermal energy extraction (where flow rate in fractures dominates the productivity of a geothermal energy reservoir) and nuclear waste repositories (where radioactive nuclides transport through fractures dominates the final safety evaluations) in fractured rocks.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)