Preparation, characterization and properties of nitrogen rich glasses in alkaline earth-Si-O-N systems

University dissertation from Stockholm : Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi

Abstract: Nitrogen rich glasses in the systems Ca-Si-O-N, Sr-Si-O-N and AE-Ca-Si-O-N (AE = Mg, Sr and Ba) have been prepared using a novel glass-synthesis route. The limits of the glass forming regions in the Ca and Sr systems and substitution limits in the AE-Ca-Si-O-N systems have been determined and physical properties of the glasses measured.Transparent glasses were obtained for a few specific compositions in the Ca-Si-O-N and Mg-Ca-Si-O-N systems. All other glasses were found to be translucent gray to opaque black, with the coloration of the glasses depending on the modifier. Small inclusions of Ca/Sr silicides and, in much smaller amounts, elemental Si are believed to be responsible for their poor transparency.A large glass forming region was found for the Ca-Si-O-N system, with glasses retaining up to 58 e/o N and 42 e/o Ca. In comparison, a more narrow glass forming region was found for the corresponding Sr system, with glasses retaining up to 45 e/o N and 39 e/o Sr. The glass formation was found to depend on reaction kinetics and precursors used. A strong exothermic reaction was observed at temperatures 650–1000oC, providing improved conditions for reaction kinetics upon further heating.Physical property measurements for the Ca and Sr glasses showed that glass transition and crystallization temperatures, viscosity, hardness, Young’s modulus and shear modulus depend strongly on the nitrogen content and that these properties increase approximately linearly with increasing nitrogen content. Glass density and refractive index are also dependent on the modifier element and content, in particular for the Sr glasses.Glasses AE-Ca-Si-O-N, with approximately constant (Ca/AE): Si:O:N ratios, showed that mixed modifier glass properties, such as density, molar volume, glass transition temperature, hardness, refractive index can be related to the effective cation field strength of the modifiers.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)