Long Noncoding RNA Mediated Regulation of Imprinted Genes

Abstract: Genomic imprinting is an epigenetic phenomenon that causes a subset of mammalian genes to be expressed from only one allele in a parent-of-origin manner. The defects in the imprinting regulation result in disorders that affect development, growth and metabolism. We have used the Kcnq1 imprinted cluster as a model to understand the mechanism of imprinted gene regulation. The imprinting at the Kcnq1 locus is regulated by a long noncoding RNA, Kcnq1ot1, whose transcription on the paternal chromosome is associated with the silencing of at least eight neighboring genes. By destabilizing Kcnq1ot1 in an episomal system, we have conclusively shown that it is the RNA and not the process of transcription that is required for the gene silencing in cis. Kcnq1ot1 RNA interacts with the chromatin modifying enzymes such as G9a and Ezh2 and recruits them to imprinted genes to establish repressive chromatin compartment and gene silencing. Using the episomal system, we have identified an 890 bp silencing domain (SD) at the 5’ end of Kcnq1ot1 RNA, which is required for silencing of neighboring reporter genes. The deletion of the SD in the mouse resulted in the relaxation of imprinting of ubiquitously imprinted genes (Cdkn1c, Kcnq1, Slc22a18, and Phlda2) as well as reduced DNA methylation over the somatic DMRs associated with the ubiquitously imprinted genes. Moreover, Kcnq1ot1 RNA interacts with Dnmt1 and recruits to the somatic DMRs and this recruitment was significantly affected in the SD mutant mice. By using a transgenic mouse, we have conditionally deleted Kcnq1ot1 promoter at different developmental stages and demonstrated that Kcnq1ot1 maintains imprinting of the ubiquitously imprinted genes by regulating DNA methylation over the somatic DMRs. Kcnq1ot1 is dispensable for the maintenance of repressive histone marks and the imprinting of placental-specific imprinted genes (Tssc4 and Osbpl5). In conclusion, we have described the mechanisms by which Kcnq1ot1 RNA establishes and maintains expression of multiple imprinted genes in cis.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)