Cathepsin D released from lysosomes mediates apoptosis

University dissertation from Linköping : Linköping University Electronic Press

Abstract: Last year (2002), the Nobel Prize in Physiology or Medicine was awarded to three scientists who have conducted pioneer research on programmed cell death. In the human body, more than a thousand billion cells are created every day, and an equal number die, thus programmed cell death, or apoptosis, is an important mechanism for maintaining tissue homeostasis and protecting against disease. Malfunctioning apoptosis is associated with many pathological conditions, for example, excess apoptosis is characteristic of AIDS, stroke, neurodegenerative diseases, and myocardinal infarction, and insufficient apoptosis is seen in autoimmune conditions and cancer. Robert Horvitz, one of the mentioned Nobel Prize Laureates, was the first to identify death genes, namely ced-3, -4, and -9 in the nematode Caenorhabditis elegans, which were later discovered to have counterparts in humans.The aim of this thesis is to clarify the participation of lysosomes and lysosomal proteases in the initiation of apoptosis. The lysosomal enzyme cathepsin D regulates the human homologue of ced-3, which encoded the caspase family of proteases. Moreover, the human homologue of ced-9 encodes the Bcl-2 family of proteins such as Bax, which was involved in regulating the release of cathepsin D from lysosomes during apoptosis. In the present studies, apoptosis was induced by various substances, all of which first caused damage to lysosomes with ensuing release of lysosomal proteases. Fibroblasts exposed either to free radicals generated by the redox cycling quinone naphthazarin or to the kinase inhibitor staurosporine exhibited rapid translocation of cathepsin D from lysosomes to the cytosol and subsequent apoptosis. Malignant macrophages (J774 cells) and T lymphocytes (Jurkat cells) exposed to the lysosomotropic detergent sphingosine displayed early lysosomal destabilization and later apoptosis. Sphingosine also destabilized isolated lysosomes. Moreover, mimicking the translocation of cathepsin D by microinjecting cathepsin D into the cytosol induced apoptosis in fibroblasts.In the mentioned systems, lysosomes were destabilized before mitochondrial changes occurred and caspases were activated. Furthermore, apoptosis was prevented by inhibition of cathepsin D in the naphthazarin, staurosporine, and sphingosine systems and by inhibition of cysteine proteases such as cathepsins B and L in the sphingosine system. These results emphasize that cytosolic localization of lysosomal proteases is necessary for the ability of these enzymes to induce apoptosis.The present results also demonstrate that, during apoptosis, lysosomal membranes are destabilized by the following: (i) free-radical-mediated lipid peroxidation; (ii) pore formation through the Bcl-2 family member Bax; (iii) the impact of the lysosomotropic detergent sphingosine. All three of these events have been implicated in numerous other apoptosis systems. Accordingly, the participation of lysosomal enzymes in apoptosis may be more widespread than previously assumed. This new perspective on lysosomes as regulators of apoptosis may lead to novel treatment strategies for diseases associated with malfunctioning apoptosis.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.