Ion Beam Analysis of First Wall Materials Exposed to Plasma in Fusion Devices

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: One major step needed for fusion to become a reliable energy source is the development of materials for the extreme conditions (high temperature, radioactivity and erosion) caused by hot plasmas. The main goal of the present study is to use and optimise ion beam methods (lateral resolution and sensitivity) to characterise the distribution of hydrogen isotopes that act as fuel. Materials from the test reactors JET (Joint European Torus), TEXTOR (Tokamak Experiment for Technology Oriented Research) and Tore Supra have been investigated.Deuterium, beryllium and carbon were measured by elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA). To ensure high 3D spatial resolution a nuclear microbeam (spot size <10 µm) was used with 3He and 28Si beams. The release of hydrogen caused by the primary ion beam was monitored and accounted for.Large variations in surface (top 10 µm) deuterium concentrations in carbon fibre composites (CFC) from Tore Supra and TEXTOR was found, pointing out the importance of small pits and local fibre structure in understanding fuel retention. At deeper depths into the CFC limiter tiles from Tore Supra, deuterium rich bands were observed confirming the correlation between the internal material structure and fuel storage in the bulk.Sample cross sections from thick deposits on the JET divertor showed elemental distributions that were dominantly laminar although more complex structures also were observed. Depth profiles of this kind elucidate the plasma-wall interaction and material erosion/deposition processes in the reactor vessel.The information gained in this thesis will improve the knowledge of first wall material for the next generation fusion reactors, concerning the fuel retention and the lifetime of the plasma facing materials which is important for safety as well as economical reasons.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)