Noble Crayfish (Astacus astacus) in a Changing World : Implications for Management

Abstract: The noble crayfish (Astacus astacus) is critically endangered in Sweden. This is mainly due to the crayfish plague (Aphanomyces astaci), a lethal disease that, among other things, can be spread through the stocking of fish from contaminated water or contaminated fishing gear. The largest single propagation path is the illegal introduction of infected signal crayfish (Pacifastacus leniusculus). A conservation measure for crayfish is to re-introduce it to where it has a chance to survive, though a sustainable, locally regulated fishing can also serve as an indirect protection for the species. When the local inhabitants are allowed to keep their fishing culture and when fishing is acceptable, the incentive for illegal stocking of signal crayfish is low. However, it is important to avoid overfishing because the recovery, especially in the northern regions, can take several years. Therefore, it is important to know how crayfish respond long-term to fishing and environmental factors.Crayfish populations became extinct in the River Ljungan for unknown reasons in 1999. The water flow of the river has been used for activities such as fishing, timber transport and hydroelectric power since the 1500s, and the noble crayfish has been part of the fauna since the last century. The River Ljungan was known as one of Sweden's best fishing areas for crayfish and fishing became an important part of the local tradition. When the crayfish populations became extinct, a reintroduction program was a natural step, and crayfish are nowadays re-established in the river.From 1963 to 1990 the Swedish Board of Fisheries collected data from crayfish fishing in the River Ljungan to determine the economic damage to fishery owners caused by the construction of a power plant. After each season the fishermen reported the catch. In this thesis, the data was used to investigate which factors influence the long-term size of the crayfish catch and how the crayfish catches were affected by the power plant building. After re-introduction of the crayfish to the River Ljungan, the local fishermen monitored the population development in a simple, standardized way. To examine the validity of their measurements and to investigate the body growth of the individuals, a capture-recapture technique with a permanent marking of the crayfish was used.The crayfish catches were primarily impacted by the previous years' catch size, and a large catch the previous year resulted in a reduced catch the following year. A mild winter climate (NAO-index > -0.7) six years before the catch implied a large catch, whereas a high water flow during the autumn or spring (>95m3s-1) two years before the catch, implied a poor catch. Major habitat changes in the form of greatly reduced water flow (~90%) were negative for crayfish catches. The standardized method of fishing used by the local fishermen to monitor the development of the crayfish population was precise enough to detect population trends and this method can therefore be recommended to monitor future re-introductions of crayfish. Although the River Ljungan is located at the northern edge of the species' range, noble crayfish in the river presently have a body growth rate that is close to the maximum measured for crayfish (8 mm/moult for females and 10 mm/moult for males).Based on the results, the most important advice for sustainable fisheries in Ljungan and other northern rivers is to:Monitor the population trends, NAO-index and water flow in May and October. Use the results from the monitoring to determine the number of allowed fishing days and traps.Collect data about the catch size and efforts from legal fishing and use it to evaluate the sustainability of the fishing.Enhance the buildup of the harvestable cohort by-saving reproductive females-introduce a size limit of 10 cm-provide proper shelters for the non-harvestable cohort.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)