Biofilm adhesion on silicone materials

Abstract: Silicone composite high voltage insulators are sometimes contaminated by microorganisms in outdoor applications, which results in the insulator becoming conductive and thereafter failure of the insulators. In this work, it has been tried to develop silicone materials with antimicrobial properties. Silicone was blended with various antimicrobial agents. Affectivity and appropriate concentration of the biocides were decided through a fast test prior to the manufacturing of the samples. Samples were aged according to an international biodegradation test. To study the extent of the growth on the samples’ surface visual analysis and scanning electron microscopy (SEM) were performed. Samples were studied for changes in surface properties and surface chemical composition with carrying out dynamic contact angle measurements and Fourier transform infrared spectroscopy respectively. Results from the biodegradation test showed some biocides could inhibit the fungal growth comparing the results for the reference samples. Biofilm formation resulted in changes in surface hydrophobicity and surface chemical composition. Further, silicone materials were compounded with clay nanoparticles, which were modified with different organic compounds. Reference samples were manufactured with clay nanoparticles modified with a siloxane surfactant to make the dispersion of the particles into the silicone matrix easier. Clay nanoparticles were also grafted with two organic compounds with antimicrobial effect in order to synthesis organoclays, which have antimicrobial properties. Furthermore, grafting clay with these two compounds was also aimed to make the easy dispersion of the particles into silicone possible. Nanocomposites compounded with antimicrobial clay nanoparticles as well as reference nanocomposites were tested with quick test for microbial growth. Changes in the clay particles morphology were examined with x-ray diffraction as well as SEM. Manufactured nanocomposites were also examined with x-ray and SEM to study the dispersion of nanoparticles into the silicone matrix. Changes in clay morphology were observed due to modification with organic compounds. Microbial growth was inhibited on some samples due to presence of antimicrobial organoclays.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.