Balancing Demand and Supply in Complex Manufacturing Operations: Tactical-Level Planning Processes

Abstract: By balancing medium-term demand and supply, tactical planning enables manufacturing firms to realize strategic, long-term business objectives. However, such balancing in engineer-to-order (ETO) and configured-to-order (CTO) operations, due to the constant pressure of substantial complexity (e.g., volatility, uncertainty, and ambiguity), induces frequent swings between over- and undercapacity and thus considerable financial losses. Manufacturers respond to such complexity by using planning processes that address the business’s needs and risks at various medium-term horizons, ranging from 3 months to 3 years. Because the importance of decision-making increases exponentially as the horizon shrinks, understanding the interaction between complexity and demand-supply balancing requires extending findings reported in the literature on operations and supply chain planning and control. Therefore, this thesis addresses complexity’s impact on planning medium-term demand-supply balancing on three horizons: the strategic– tactical interface, the tactical level, and the tactical–operational interface. To explore complexity’s impact on demand–supply balancing in planning processes, the thesis draws on five studies, the first two of which addressed customer order fulfillment in ETO operations. Whereas Study I, an in-depth single-case study, examined relevant tactical-level decisions, planning activities, and their interface with the complexity affecting demand–supply balancing at the strategic–tactical interface, Study II, an in-depth multiple-case study, revealed the cross-functional mechanisms of integration affecting those decisions and activities and their impact on complexity. Next, Study III, also an in-depth multiple-case study, investigated areas of uncertainty, information-processing needs (IPNs), and information-processing mechanisms (IPMs) within sales and operations planning in ETO operations. By contrast, Studies IV and V addressed material delivery schedules (MDSs) in CTO operations; whereas Study IV, another in-depth multiple-case study, identified complexity interactions causing MDS instability at the tactical–operational interface, Study V, a case study, quantitatively explained how several factors affect MDS instability. Compiling six papers based on those five studies, the thesis contributes to theory and practice by extending knowledge about relationships between complexity and demand–supply balancing within a medium-term horizon. Its theoretical contributions, in building upon and supporting the limited knowledge on tactical planning in complex manufacturing operations, consist of a detailed tactical-level planning framework, identifying IPNs generated by uncertainty, pinpointing causal and moderating factors of MDS instability, and balancing complexity-reducing and complexity-absorbing strategies, cross-functional integrative mechanisms, IPMs, and dimensions of planning process quality. Meanwhile, its practical contributions consist of concise yet holistic descriptions of relationships between complexity in context and in demand– supply balancing. Manufacturers can readily capitalize on those descriptions to develop and implement context-appropriate tactical-level planning processes that enable efficient, informed, and effective decision-making.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.