On the performance of stratified ventilation

Abstract: People nowadays spend most of their time indoors, for example in their homes, cars, in trains, at work, etc. In Sweden, the energy demand in the built environment is a growing issue. The building sector accounts for 40% of total energy use and 15% of total CO2 emissions, and around one-third of the energy use in the world is related to providing a healthy and good comfort indoors. To achieve acceptable indoor climates new designs for the ventilation systems have been proposed in recent decades, among them stratified ventilation systems.Stratified ventilation is a concept that often allows good performance for both indoor air quality and thermal comfort. Stratified ventilation systems are effective in reducing cross contamination, since there is virtually no mixing in the space; the temperature and the pollutant concentration increase linearly from the heat source with the height of the occupied zone. There are many different ventilation supply devices using the stratified principle, such as displacement supply device (DSD), impinging jet supply device (IJSD) and wall confluent jet supply device (WCJSD).The main aim of this thesis is to analyze and compare different supply devices based on stratified ventilation, with different setups, related to thermal indoor climate, energy efficiency and ventilation efficiency. The ultimate goal is to contribute to an increased understanding of how ventilation systems with stratified supply devices perform.Two scientific methods have mainly been used in this thesis, i.e., experimental and numerical investigations. For numerical experiments the CFD (Computational Fluid Dynamics) code ANSYS and FIDAP have been used. Experimental studies have been performed with thermocouples, Hot-Wire Anemometry (HWA) and Hot-Sphere Anemometry, thermal comfort measurement equipment and tracer gas measurement equipment.This thesis mainly focuses on three research questions: Interaction between a supply device based on stratified ventilation and downdraft from windows; Flow behavior, energy performance and air change effectiveness for different supply devices based on stratified ventilation; and Thermal comfort for different supply devices based on stratified ventilation.Research question one showed that the arrangement of displacement supply device and window in cold climate has significant effect on the flow pattern below the window. Different supply airflow rates have an effect on both the velocity and the temperature of the downdraft. In this case the velocity decreased by approximately 9.5% and the temperature in the downdraft decreased 0.5°C when the flowrate from the supply device increased from 10 to 15 l/s.Research question two showed that airflow patterns between different air supply systems were essentially related to characteristics of air supply devices, such as the type, configuration and position, as well as air supply velocities and momentum. For WCJSD, IJSD and DSD, positions of heat sources (such as occupant, computers, lights and external heat sources) played an important role in formation of the room airflow pattern. One interesting observation is that the temperature in the occupied zone is lower and a more stratified temperature field implies a more efficient heat removal by a stratified air supply device. The results revealed that the lowest temperature in the occupied zone was achieved for DSD, but with IJSD and WCJSD slightly warmer, while the system with a mixing supply device (MSD) showed a much higher temperature. The results confirm that air change effectiveness (ACE) for the DSD, WCJSD and IJSD is close to each other. However, MSD shows lower ACE in all the present papers than IJSD, WCJSD and DSD.Research question three showed that ventilation systems with stratified supply devices in almost all of the studied cases showed an acceptable level for predicted percentage dissatisfied (PPD), predicted mean vote (PMV) and percentage dissatisfied due to draft (DR). If comparing ventilation systems, using IJSD, WCJSD or DSD with MSD always showed thermal comfort better or at the same level.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.