On reliability and maintenance modelling of ageing equipment in electric power systems

University dissertation from Stockholm : KTH

Abstract: Maintenance optimisation is essential to achieve cost-efficiency, availability and reliability of supply in electric power systems. The process of maintenance optimisation requires information about the costs of preventive and corrective maintenance, as well as the costs of failures borne by both electricity suppliers and customers. To calculate expected costs, information is needed about equipment reliability characteristics and the way in which maintenance affects equipment reliability. The aim of this Ph.D. work has been to develop equipment reliability models taking the effect of maintenance into account.The research has focussed on the interrelated areas of condition estimation, reliability modelling and maintenance modelling, which have been investigated in a number of case studies. In the area of condition estimation two methods to quantitatively estimate the condition of disconnector contacts have been developed, which utilise results from infrared thermography inspections and contact resistance measurements. The accuracy of these methods were investigated in two case studies. Reliability models have been developed and implemented for SF6 circuit-breakers, disconnector contacts and XLPE cables in three separate case studies. These models were formulated using both empirical and physical modelling approaches. To improve confidence in such models a Bayesian statistical method incorporating information from the equipment design process was also developed. This method was illustrated in a case study of SF6 circuit-breaker operating rods. Methods for quantifying the effect of maintenance on equipment condition and reliability have been investigated in case studies on disconnector contacts and SF6 circuit-breakers. The input required by these methods are condition measurements and historical failure and maintenance data, respectively.This research has demonstrated that the effect of maintenance on power system equipment may be quantified using available data. However, realising the full potential of these methods requires the gathering and utilisation of failure and maintenance data as well as condition measurements to be improved.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)