Effects of repetitive work on proprioception and of stretching on sensory mechanisms : implications for work-related neuromuscular disorders

Abstract: The aims of the thesis were (i) to investigate the impact of repetitive low-intensity work exposure on proprioception and (ii) to examine effects of muscle stretching (especially sensory effects and effects on muscle nociception) and to relate its application to the prevention, alleviation and/or treatment of work-related neuromuscular disorders. The effects of low-intensity repetitive work on the shoulder proprioception were tested in healthy subjects. The effect of working time on the retention of subjective fatigue and their relation to changes in proprioception, and the immediate effect of stretching on shoulder proprioception were investigated. A new method to test the stretchability of the rectus femoris muscle was investigated for reliability and validity and used to assess the effects of a two-week stretching regimen on range of motion and on subjective stretch sensation. Finally, the interactions between innocuous muscle stretch and nociceptive chemical stimulation on discharge behavior of nociceptive dorsal horn neurons in the feline spinal cord were explored. The main findings were as follows: 1) The repetitive low-intensity work to fatigue diminished the shoulder proprioception; the working time as well as the retention of subjective fatigue were partly related to the extent of changed proprioception. 2) There was no effect of acute muscle stretching on the proprioception. 3) The new method for testing muscle stretchability proved valid and reliable. A two-week stretching regimen increased the tolerance to stretch torque, but the range of motion remained unchanged. 4) Half of the nociceptive dorsal horn neurons that responded to close arterial injections of bradykinin were modulated by muscle stretching applied directly after the injections. Altogether, the results give credence to the hypothesis of an involvement of sensory information distortion due to repetitive low-intensity work exposure in the development of work-related neuromuscular disorders. Increased tolerance to stretch torque may be an important mechanism in explaining improvements following stretch treatment. The spinal interactions between innocuous stretch and nociceptive muscle afferent inputs indicate a possible mechanism involved in stretching-induced pain alleviation.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)