Cell signaling by Rho and Miro GTPases Studies of Rho GTPases in Cytoskeletal Reorganizations and of Miro GTPases in Mitochondrial Dynamics

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: The Ras superfamily of GTPases embraces six major branches of proteins: the Ras, Rab, Ran, Arf, Rho and Miro subfamilies. The majority of GTPases function as binary switches that cycle between active GTP-bound and inactive GDP-bound states. This thesis will focus primarily on the biological functions of the Rho and Miro proteins. The Rho GTPases control the organization of the actin cytoskeleton and other associated activities, whereas the Miro GTPases are regulators of mitochondrial movement and morphology. A diverse array of cellular phenomena, including cell movement and intracellular membrane trafficking events, are dependent on cytoskeletal rearrangements mediated by Rho GTPases. Although human Rho GTPases are encoded by 20 distinct genes, most studies involving Rho GTPases have focused on the three representatives RhoA, Rac1 and Cdc42, which each regulate specific actin-dependent cellular processes. In an effort to compare the effects of all Rho GTPase members in the same cell system, we transfected constitutively active Rho GTPases in porcine aortic endothelial (PAE) cells and examined their effects on the organization of the actin cytoskeleton. We identified a number of previously undetected roles of the different members of the Rho GTPases. Moreover, we demonstrated that the downstream effectors of Rho GTPases have a broader specificity than previously thought. In a screen for novel Ras-like GTPases, we identified the Miro GTPases (Mitochondrial Rho). In our characterization of Miro, we established that these proteins influence mitochondrial morphology and serve functions in the transport of mitochondria along the microtubule system. Additionally, we provided evidence that Miro can be under control of calcium signaling pathways. Mitochondria are highly dynamic organelles that undergo continuous change in shape and distribution. Defects in mitochondrial dynamics are associated with several neurodegenerative diseases. In conclusion, our findings have contributed to a deeper understanding of the biological roles of Rho and Miro GTPases.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)