Quaternary paleoceanography of the Arctic Ocean A study of sediment stratigraphy and physical properties

University dissertation from Stockholm : Department of Geology and Geochemistry, Stockholm University

Abstract: A Quaternary perspective on the paleoceanographic evolution of the central Arctic Ocean has been obtained in this PhD thesis by studying sediment cores from all of the Arctic’s major submarine ridges and plateaus. The included cores were mainly recovered during the Healy-Oden Trans-Arctic expedition in 2005 and the Lomonosov Ridge off Greenland expedition in 2007. One of the main thesis objectives is to establish whether different sediment depositional regimes prevailed in different parts of the central Arctic Ocean during the Quaternary and, if so, establish general sedimentation rates for these regimes. This was approached by dating key cores using the decay of the cosmogenic isotopes 10Be and 14C, and through stratigraphic core-to-core correlation using sediment physical properties. However, the Arctic Ocean sea ice complicated the use of 10Be for dating because a solid sea ice cover prevents the 10Be isotopes from reaching the seafloor, resulting in too old ages. Dating using 14C is also complicated due to uncertain marine reservoir age corrections in the central Arctic Ocean. The core-to-core correlations show five areas with different depositional regimes; the northern Mendeleev Ridge and Alpha Ridge, southern Mendeleev Ridge, Morris Jesup Rise, Lomonosov Ridge and Yermak Plateau, listed in the order of increasing sedimentation rates from ~0.5cm/ka to ~4.8 cm/ka. A detailed study of the relationship between sediment bulk density and grain sizes suggests a strong link between variations in clay abundance and bulk density. Grain size analysis of a Lomonosov Ridge core show that fine silt and clay dominates the interglacials, possibly due to increased suspension freezing of these size fractions into sea ice and/or nepheloid transport. Sediments younger than the marine isotope stage (MIS) 7 generally contain more coarse silt, attributed to a regime shift during the Quaternary with increased iceberg transport into the central Arctic Ocean from MIS 6 and onwards.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)