Energy from Ocean Waves Full Scale Experimental Verification of a Wave Energy Converter

University dissertation from Uppsala : Universitetsbiblioteket

Abstract: A wave energy converter has been constructed and its function and operational characteristics have been thoroughly investigated and published. The wave energy converter was installed in March of 2006 approximately two kilometers off the Swedish west coast in the proximity of the town Lysekil. Since then the converter has been submerged at the research site for over two and a half years and in operation during three time periods for a total of 12 months, the latest being during five months of 2008. Throughout this time the generated electricity has been transmitted to shore and operational data has been recorded. The wave energy converter and its connected electrical system has been continually upgraded and each of the three operational periods have investigated more advanced stages in the progression toward grid connection. The wave energy system has faced the challenges of the ocean and initial results and insights have been reached, most important being that the overall wave energy concept has been verified. Experiments have shown that slowly varying power generation from ocean waves is possible.Apart from the wave energy converter, three shorter studies have been performed. A sensor was designed for measuring the air gap width of the linear generator used in the wave energy converter. The sensor consists of an etched coil, a search coil, that functions passively through induction. Theory and experiment showed good agreement.The Swedish west coast wave climate has been studied in detail. The study used eight years of wave data from 13 sites in the Skagerrak and Kattegatt, and data from a wave measurement buoy located at the wave energy research site. The study resulted in scatter diagrams, hundred year extreme wave estimations, and a mapping of the energy flux in the area. The average energy flux was found to be approximately 5.2 kW/m in the offshore Skagerrak, 2.8 kW/m in the near shore Skagerrak, and 2.4 kW/m in the Kattegat.A method for evaluating renewable energy technologies in terms of economy and engineering solutions has been investigated. The match between the technologies and the fundamental physics of renewable energy sources can be given in terms of the technology’s utilization. It is argued that engineers should strive for a high utilization if competitive technologies are to be developed.