Reduced Receivers for Faster-than-Nyquist Signaling and General Linear Channels

University dissertation from Tryckeriet i E-huset, Lunds universitet

Abstract: Fast and reliable data transmission together with high bandwidth efficiency are important design aspects in a modern digital communication system. Many different approaches exist but in this thesis bandwidth efficiency is obtained by increasing the data transmission rate with the faster-than-Nyquist (FTN) framework while keeping a fixed power spectral density (PSD). In FTN consecutive information carrying symbols can overlap in time and in that way
introduce a controlled amount of intentional intersymbol interference (ISI). This technique was introduced already in 1975 by Mazo and has since then been extended in many directions.

Since the ISI stemming from practical FTN signaling can be of significant duration, optimum detection with traditional methods is often prohibitively complex, and alternative equalization methods with acceptable complexity-performance tradeoffs are needed. The key objective of this thesis is therefore to design reduced-complexity receivers for FTN and general linear channels that achieve optimal or near-optimal performance. Although the performance of a detector can be measured by several means, this thesis is restricted to bit error rate (BER) and mutual information results. FTN signaling is applied in two ways: As a separate uncoded narrowband communication system or in a coded scenario consisting of a convolutional encoder, interleaver and the inner ISI mechanism in serial concatenation. Turbo equalization where soft information in the form of log likelihood ratios (LLRs) is exchanged between the equalizer and the decoder is a commonly used decoding technique for coded FTN signals.

The first part of the thesis considers receivers and arising stability problems when working within the white noise constraint. New M-BCJR algorithms for turbo equalization are proposed and compared to reduced-trellis VA and BCJR benchmarks based on an offset label idea. By adding a third low-complexity M-BCJR recursion, LLR quality is improved for practical values of M. M here measures the reduced number of BCJR computations for each data symbol. An improvement of the minimum phase conversion that sharpens the focus of the ISI model energy is proposed. When combined with a delayed and slightly mismatched receiver, the decoding allows a smaller M without significant loss in BER.

The second part analyzes the effect of the internal metric calculations on the performance of Forney- and Ungerboeck-based reduced-complexity equalizers of the M-algorithm type for both ISI and multiple-input multiple-output (MIMO) channels. Even though the final output of a full-complexity equalizer is identical for both models, the internal metric calculations are in general different. Hence, suboptimum methods need not produce the same final output. Additionally, new models working in between the two extremes are proposed and evaluated. Note that the choice of observation model does not impact the detection complexity as the underlying algorithm is unaltered.

The last part of the thesis is devoted to a different complexity reducing approach. Optimal channel shortening detectors for linear channels are optimized from an information theoretical perspective. The achievable information rates of the shortened models as well as closed form expressions for all components of the optimal detector of the class are derived. The framework used in this thesis is more general than what has been previously used within the area.