Characterization of soot in air and rain over southern Asia

University dissertation from Stockholm : Department of Meteorology , Stockholm University

Abstract: Filter-based optical measurements of light absorbing particulate matter at awavelength of about 550 nm, here referred to as soot, in air and rainwaterhave been performed during the period from 1st June 2005 to 31th May 2009at Godavari in Nepal, Sinhagad in India and Hanimaadhoo in The Maldives.A method for determination of water-insoluble light absorbing matter inrainwater has been developed. Analysis of environmental samples has beensuccessfully performed with the described method on samples collected atHanimaadhoo and Godavari. At Hanimaadhoo the average soot concentrationin rainwater was 48 mgl-1 and at Godavari 86 mgl-1.In order to reduce systematic errors at optical determination of soot due tothe light scattering of non-absorbing particles co-deposited on the filter, suchas inorganic salts and mineral dust, an additional sensor recording backscatteredlight was used. Two alternative protocols of corrections (optical andchemical) were applied to the samples. Simultaneous measurements of sootand inorganic ions in aerosol and precipitation at Hanimaadhoo during theperiod May 2005 to February 2007 made it possible to calculate the washoutratio (WR) of these components as a measure of how efficiently they are scavengedby precipitation. During the monsoon season the WR for soot was similarto that of sulphate and other fine mode aerosol components, indicating thatsoot containing particles in these situations were efficient as cloud condensationnuclei. During the polluted winter days, on the other hand, the WR forsoot was 3 times smaller than that of sulphate, showing that the soot containingparticles had retained a hydrophobic character even after a travel time ofseveral days.The Indian monsoon circulation with its two annual phases in combinationwith the location of the main combustion source areas dominated the observedpatterns of soot at the observatories in India and Maldives. Godavari in Nepalwas however mainly influenced by combustion sources all year around concealingpossible variability related to the monsoon circulation. At Hanimaadhoo,peak values in the soot concentration occurred during the winter season(December to April) when air was transported from the polluted Indian subcontinentout over the Indian Ocean. At least a factor of ten lower values wererecorded in air that had spent more than 10-days over the Indian Ocean duringthe monsoon season (July to September). 

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.