Boundary Layer Parametrization in Numerical Weather Prediction Models

University dissertation from Stockholm : Department of Meteorology, Stockholm University

Abstract: Numerical weather prediction (NWP) and climate models have shown to have a challenge to correctly simulate stable boundary layers and diurnal cycles. This aim of this study is to evaluate, describe and give suggestions for improvements of the descriptions of stable boundary layers in operational NWP models. Two papers are included. Paper I focuses on the description of the surface and the interactions between the surface and the boundary layer in COAMPSR, a regional NWP model. The soil parametrization showed to be of great importance to the structure of the boundary layer. Moreover, it showed also that a low frequency of radiation calculations caused a bias in received solar energy at the surface.In paper II, the focus is on the formulation of the turbulent transport in stable boundary layers. There, an implementation of a diffusion parametrization based on the amount of turbulent kinetic energy (TKE) is tested in a single column model (SCM) version of the global NWP model Integrated Forecast System (IFS). The TKE parametrization turned out to behave similarly as the currently operational diffusion parametrization in convective regimes and neutral regimes, but showed to be less diffusive in weakly stable and stable conditions. The formulations of diffusion also turned out to be very dependent on the length scale formulation. If the turbulence and the gradients of wind temperature and wind are weak, the magnitude of turbulence can enter an oscillating mode. This oscillation can be avoided with the use of a lower limit of the length scale.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)