Low-friction and wear-resistant carbon nitride coatings for bearing components grown by magnetron sputtering

University dissertation from Linköping : Linköping University Electronic Press

Abstract: The scope of this thesis is the investigation of magnetron sputtered carbon nitride coatings suitable for roller bearing components. The research field of tribology of bearings focuses on minimizing friction between components by improving the lubricants. The development of lubricants is, however, expensive and involves environmentally deleterious chemical byproducts. A solution to avoid such harmful conditions, reduce the processing cost, and more importantly, minimize the friction, is to apply a low-friction and wear-resistant coating on the surface of the bearing. The deposition of such coatings on components can substantially increase their lifetime, reduce the maintenance costs, and eventually increase the reliability of the machinery.Carbon nitride (CNx) coatings have high resiliency and can withstand the demanding conditions of bearing operation. The morphology of CNx coatings is highly affected by applying a negative substrate bias voltage. At high bias (100-120 V ), the coatings become denser and more homogeneous with decreased porosity, resulting in more wear-resistant materials. I also found that the duty cycle of the applied bias affects the layer morphology. Less homogeneous films are produced using lower duty cycles (i.e., in high power impulse magnetron sputtering, HiPIMS) for a specific value of bias voltage. Thus, changing bias voltage, we can manipulate the structure of CNx and design layers, depending on the requirements of the bearing application.My results show that denser films yield higher hardness and wear-resistance, but also higher compressive stress, which is a disadvantage for the coating-substrate adhesion. In order to obtain improved adhesion on bearing steel, we developed an in-situ surface treatment, prior to the CNx deposition, which also surpasses the limitations set by the properties of each material. The steel substrates are successfully pretreated using W or Cr ions originating from a HiPIMS source. Plasma ions are accelerated to the substrates with energies of 900 eV , due to the application of a synchronized high bias voltage, which clean effectively the substrate surface from residual contaminants and strengthen the interfacial bonding.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.