Low-temperature Heating in Existing Swedish Residential Buildings : Toward Sustainable Retrofitting

Abstract: As an energy-efficient alternative in cold climate countries such as Sweden, low-temperature heating (LTH) technology has shown promising advantages and shortcuts to contribute to the efficiency of heat supply, as well as to the overall sustainability of building performance. The goal of this thesis is to contribute to the development of methodologies and modeling tools to support sustainable retrofitting in the Swedish housing stock. A combination of three integrated modeling techniques was developed. The main focus of this work was implementing LTH in retrofitting practice. The principle of the developed methods can be regarded as a top-down approach, underpinning the general definition of LTH and sustainability criteria. It was found that a preliminary compilation and investigation of the building typology could simplify the retrofitting decision-making. Also, 36–54% of final energy savings could be achieved in studied housing archetypes by effective energy retrofitting. Combining LTH radiators with ventilation heat recovery showed the largest contributions. Below 30 W/m2 (12 W/ m3) heating demand, both radiators (ventilation radiators and baseboard radiator) could work as LTH. These reduced supply temperatures further improved the COP of air-source heat pumps by approximately 12% - 18%. For retrofitting of conventional radiators, there was no concrete evidence to support Type 22 having higher thermal efficiency than Type 21, for the Swedish climate and heating seasons. The achievements and full potential of implementing LTH in retrofitting were found to require not only efficient radiators, but also a well-designed package – insulation, piping, pumping and energy supply system - that suited the current heating demand of the building, given the local climate condition.However, it should also be highlighted that retrofitting incorporating all evaluated measures would not always yield higher long-term economic profits among different archetypes. It is important to find the trade-off between cost-effectiveness and energy savings in similar archetypes - instead of using a “one size fits all” types of solution. For conventional retrofit measures, such as insulations of building envelopes, it was necessary to evaluate the embodied energy during the whole retrofitting process.