Applications of ocean transport modelling

University dissertation from Stockholm : Department of Meteorology, Stockholm University

Abstract: The advective motion of seawater governs the transport of almost everything, animate or inanimate, present in the ocean and those lacking the ability to outswim the currents have to follow the flow. This makes modelling of advective ocean transports a powerful tool in various fields of science where a displacement of something over time is studied. The present thesis comprises four different applications of ocean-transport modelling, ranging from large-scale heat transports to the dispersion of juvenile marine organisms. The aim has been to adapt the method not only to the object of study, but also to the available model-data sets and in situ-observations.The first application in the thesis is a study of the oceanic heat transport. It illustrates the importance of wind forcing for not only the heat transport from the Indian to the Atlantic Ocean, but also for the net northward transport of heat in the Atlantic.In the next study focus is on the particle-transport differences between an open and a semi-enclosed coastal area on the Swedish coast of the Baltic Sea. The modelled patterns of sedimentation and residence times in the two basins are examined after particles having been released from a number of prescribed point sources.In the two final studies the transport-modelling framework is applied within a marine-ecology context and the transported entities are larvae of some Scandinavian sessile and sedentary species and non-commercial fishes (e.g. the bay barnacle, the blue mussel, the shore crab and the gobies). The effects of depth distribution of dispersing larvae on the efficiency of the Marine Protected Areas in the Baltic Sea are examined. Further, the diversity in dispersal and connectivity depending on vertical behaviour is modelled for regions with different tidal regimes in the North Sea, the Skagerrak and the Kattegat.The spatial scales dealt with in the studies varied from global to a highly resolved 182-metres grid. The model results, excepting those from the global study, are based on or compared with in situ-data.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.