Radiohalogenated Compounds for Tumor Targeting : Synthesis and Radiolabeling

Abstract: This thesis describes the synthesis and radiohalogenation of compounds of potential use for tumor targeting. The first section describes the synthesis and radioiodination of DNA intercalating compounds. The compounds are derivatives of 9-aminoacridine, and the anthracyclins daunorubicin and doxorubicin. The precursor compounds were labeled with 125I (T1/2 = 60 days), which is an Auger emitting nuclide. 125I decaying in the close vicinity of DNA is known to have a much higher cell killing effect than 125I decaying in the cytoplasm and some of the labeled compounds prepared in this thesis are currently being tested for use in targeted radionuclide therapy for cancer. The second section describes the radiobromination of closo-carboranes by subjecting the corresponding iodinated compounds to palladium-catalyzed halogen exchange using [76Br]bromide. The 76Br isotope (T1/2 = 16.2 h) is a positron emitting nuclide that is suitable for PET studies. Via the halogen exchange reaction good to excellent radiochemical yields of radiobrominated closo-carboranes were obtained. The results of the present study may prove to be applicable to pharmacokinetic studies of carboranes and their derivatives. The third and final section describes the indirect radiobromination of the trastuzumab anti-HER2 monoclonal antibody and of the anti-HER2 Affibody by means of an “one-pot” procedure using N-succinimidyl-5-(tributylstannyl)-3-pyridinecarboxylate (SPC) and ((4-hydroxyphenyl)ethyl))maleimide (HPEM), respectively. It was found that SPC and HPEM can be efficiently radiobrominated and thereafter coupled to the antibody and Affibody, respectively. The labeled proteins retained their capacity to bind specifically to HER2 expressing SKOV-3 cells in vitro. Application of this method to 76Br might enable the use of PET in the detection of HER2 expression in breast, ovarian, and urinary bladder carcinomas.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)