Selector Technology : For Multiplex DNA Analysis

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: A majority of methods for identifying sequences in the human genome involve target sequence amplification through PCR. This work presents novel methods for amplifying circularized DNA and presents solutions for some major limitations of PCR.We have developed a novel method to amplify circularized DNA molecules based on a serial rolling-circle replication reaction, called circle to circle amplification (C2CA). Amplified DNA circles can be detected in array-based analyses or in real-time using molecular beacons. The amplification mechanism allows higher precision in quantification than in exponential amplification methods like PCR, and more products can be generated than in PCR.A major limitation of PCR is that amplification artifacts arise when large numbers of specific primer pairs are simultaneously added to a reaction. We have developed a solution to this problem that enables multiplex PCR amplification of specific target sequences without producing amplification artifacts. The procedure is based on oligonucleotide constructs, called selectors. The selectors identify defined target nucleic acid sequences, and they act as ligation templates to direct circularization of these targets. The selectors contain a general primer-pair motif that allows the circularized targets to be amplified in multiplex using a universal PCR primer pair. We also developed a computer program, PieceMaker, that finds an optimal design of selector probes for a given selector application. We demonstrate the method by performing a 96-plex PCR of specific DNA sequences with high success-rate and reproducibility.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.